Advertisement

Propagation of Acoustic Waves

Chapter
  • 253 Downloads
Part of the Applied Mathematical Sciences book series (AMS, volume 87)

Abstract

The propagation of acoustic waves in a n + 1 dimensional stratified fluid is described by the following wave equation
$$ \frac{{{{\partial }^{2}}}}{{\partial _{t}^{2}}}u\left( {x,y,t} \right) - c_{0}^{2}\left( y \right)\Delta u\left( {x,y,t} \right) = 0, $$
(1.1)
where Δ denotes the n+1 dimensional Laplacian
$$\Delta = \sum\limits_{i = 1}^n {\frac{{{\partial ^2}}}{{\partial x_i^2}}} + \frac{{{\partial ^2}}}{{\partial _y^2}},$$
(1.2)
where the derivatives are in distribution sense x=(x1,x2,…xR n , yR, tR.

Keywords

Compact Operator Essential Spectrum Functional Calculus Positive Eigenvalue Wave Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México

Personalised recommendations