Skip to main content

Sediment Shear Waves: A Comparison of In Situ and Laboratory Measurements

  • Chapter
Book cover Microstructure of Fine-Grained Sediments

Part of the book series: Frontiers in Sedimentary Geology ((SEDIMENTARY))

Abstract

In recent years, scientists from such diverse fields as geophysics, seafioor engineering, sedimentology, soil mechanics, and underwater acoustics have devoted considerable attention to the measurement of sediment shear wave velocity and/or sediment dynamic modulus. These fundamental sediment properties are important to predicting the stability of sediment slopes, the consolidation behavior of sediments, the strength of marine foundations, and the conversion of water-borne energy to sediment shear wave energy at the seabottom, to give just a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akal, T., P. V. Curzi, and E. Michelozzi, 1984. Geoacoustic and geotechnical properties of sediments: a pilot study. Società Geologica Italiana Memorie, v. 27, p. 411–421.

    Google Scholar 

  • Akal, T, H. Schmidt, and P. V. Curzi, 1986. The use of Love waves to determine the geoacoustic properties of marine sediments. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo-Acoustics. Plenum Press, London, p. 841–852.

    Google Scholar 

  • Anderson, D. G., and R. D. Woods, 1975. Comparison of field and laboratory moduli. In: In Situ Measurement of Soil Properties, Raleigh, North Carolina. ASCE, New York, p. 69–92.

    Google Scholar 

  • Anderson, D. G., C. España, and V. R. McLamore, 1978. Estimating In Situ shear moduli at competent sites. In: Proceedings of the Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, California. ASCE, New York, p. 181–197.

    Google Scholar 

  • Arrango, I., Y. Moriwaki, and F. Brown, 1978. In-situ and laboratory shear velocity and modulus. In: Proceedings of the Specialty Conference on Earth-quake Engineering and Soil Dynamics, Pasadena, California. ASCE, New York, p. 198–212.

    Google Scholar 

  • Bennell, J. D., P. D. Jackson, and P. Schultheiss, 1982. Further development of sea-floor geophysical probing. In: Oceanology International 82, Brighton, U.K. Spearhead Publications, Kingston-on-Thames, p. 4–8.

    Google Scholar 

  • Biot, M. A., 1962. Generalized theory of acoustic propagation in porous dis- sipative media. Journal of the Acoustical Society of America, v. 34, p. 1254–1264.

    Article  Google Scholar 

  • Brunson, B. A., and R. K. Johnson, 1980. Laboratory measurements of shear wave attenuation in saturated sand. Journal of the Acoustical Society of America, v. 68, p. 1371–1375.

    Article  Google Scholar 

  • Bryan, G. M., and R. D. Stoll, 1988. The dynamic shear modulus of marine sediments. Journal of the Acoustical Society of America, v. 83, p. 2159–2164.

    Article  Google Scholar 

  • Cunny, R. W., and Z. B. Frey, 1973. Vibratory In Situ and laboratory soil moduli compared. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, v. 99, p. 1055–1076.

    Google Scholar 

  • Danbom, S. H., and S. N. Domenico, 1987. Shear-wave Exploration. Society of Exploration Geophysicists, Tulsa, 275 p.

    Book  Google Scholar 

  • Davis, A. D., and J. D. Bennell, 1986. Dynamic properties of marine sediments. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo-Acoustics. Plenum Press, London, p. 501–510.

    Google Scholar 

  • Fagot, M. G., 1986. Development of a deep-tow seismic system: a new capability for deep-ocean acoustic measurements. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo-Acoustics. Plenum Press, London, p. 853–862.

    Google Scholar 

  • Hamilton, E. L., 1971. Elastic properties of marine sediments. Journal of Geophysical Research, v. 76, p. 579–604.

    Article  Google Scholar 

  • Hamilton, E. L., 1976. Shear wave velocity versus depth in marine sediments: a review. Geophysics, v. 68, p. 985–996.

    Article  Google Scholar 

  • Hamilton, E. L., 1980. Geoacoustic modelling of the sea floor. Journal of the Acoustical Society of America, v. 68, p. 1313–1340.

    Article  Google Scholar 

  • Hamilton, E. L., 1987. Acoustic properties of sediments. In: Lara-Saenz, A., C. Ranz-Guerra, and C. Carbo-Fite (eds.), Acoustics and Ocean Bottom. II FASE Specialized Conference. Consejo Superior de Investigaciones Cientiticas, Madrid, p. 3–58.

    Google Scholar 

  • Hamilton, E. L., H. P. Bucker, D. L. Keir, and J. A. Whitney, 1970. Velocities of compressional and shear waves in marine sediments determined In Situ from a research submersible. Journal of Geophysical Research, v. 75, p. 4039–4049.

    Article  Google Scholar 

  • Hardin, B. O., and F. E. Richart, 1963. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, v. 89, SMI, p. 33–65.

    Google Scholar 

  • Horn, I. W., 1980. Some laboratory experiments on shear wave propagation in unconsolidated sands. Marine Geotechnology, v. 4, p. 31–54.

    Article  Google Scholar 

  • Kermabon, A., C. Gehin, P. Blavier, and B. Tonarelli, 1969. Acoustic and other physical properties of deep-see sediments in the Tyrrhenian Abyssal Plain. Marine Geology, v. 7, p. 129–145.

    Article  Google Scholar 

  • Kermabon, A., C. Gehin, P. Blavier, and B. Tonarelli, 1969. Acoustic and other physical properties of deep-see sediments in the Tyrrhenian Abyssal Plain. Marine Geology, v. 7, p. 129–145.

    Article  Google Scholar 

  • Lovell, M. A., and P. Ogden, 1984. Remote assessment of permeability/thermal diffusivity of consolidated clay sediments. Final Report to Commission of the European Communities, Nuclear Science and Technology, Luxembourg, 168 p.

    Google Scholar 

  • Ogushwitz, P. R., 1985. Applicability of Biot theory; I. Low-porosity materials, II. Suspension, III. Wave speeds versus depth in marine sediments. Journal of the Acoustical Society of America, v. 77, p. 429–464.

    Article  Google Scholar 

  • Rauch, D., 1980. Experimental and theoretical studies of seismic interface waves in coastal waters. In: Kuperman, W. A., and F. B. Jensen (eds.), Bottom-Interacting Ocean Acoustics. Plenum Press, London, p. 307–327.

    Google Scholar 

  • Rauch, D., 1986. On the role of bottom interface waves in ocean seismo- acoustics: a review. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo- Acoustics. Plenum Press, London, p. 623–641.

    Google Scholar 

  • Richardson, M. D., 1983. The effects of bioturbation on sediment elastic properties. Bulletin Societe Geologique de France, v. 25, p. 505–513.

    Google Scholar 

  • Richardson, M. D., 1986. Spatial variability of surficial shallow-water sediment geoacoustic properties. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo- Acoustics. Plenum Press, London, p. 527–536.

    Google Scholar 

  • Richardson, M. D., and D. K. Young, 1980. Geoacoustic models and bioturba-tion. Marine Geology, v. 38, p. 205–218.

    Article  Google Scholar 

  • Richardson, M. D., D. K. Young, and K. B. Briggs, 1983. Effects of hydrodynamic and biological processes on sediment geoacoustic properties in Long Island Sound, U.S.A. Marine Geology, v. 52, p. 201–206.

    Article  Google Scholar 

  • Richardson, M. D., P. V. Curzi, E. Muzi, B. Miaschi, and A. Barbagelata, 1987. Measurements of shear wave velocity in marine sediments. In: Lara- Saenz, A., C. Ranz-Guerra, and C. Carbo-Fite (eds.), Acoustics and Ocean Bottom. II FASE Specialized Conference, Consejo Superior de Investiga-ciones Cientiticas, Madrid, p. 75–84.

    Google Scholar 

  • Schmalfeldt, B., 1986. A comparison of seismic and hydroacoustic measure-ments at very low frequencies in different shallow water areas. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo-Acoustics. Plenum Press, London, p. 653–662.

    Google Scholar 

  • Schultheiss, P. J., 1981. Simultaneous measurements of P & S wave velocities during conventional laboratory soil testing procedures. Marine Geotechnology, v. 4, p. 343–367.

    Article  Google Scholar 

  • Schultheiss, P. J., 1985. Physical and geotechnical properties of sediments from the Northwest Pacific: Deep sea drilling project leg 86. Initial Reports of the Deep Sea Drilling Project, 86. U.S. Government Printing Office, Washington, D.C., p. 701–722.

    Google Scholar 

  • Shirley, D. J., 1978. An improved shear wave transducer. Journal of the Acoustical Society of America, v. 63, p. 1643–1645.

    Article  Google Scholar 

  • Shirley, D. J., and L. D. Hampton, 1978. Shear wave measurements in laboratory sediments. Journal of the Acoustical Society of America, v. 63, p. 607–613.

    Article  Google Scholar 

  • Shirley, D. J., and L. D. Hampton, 1978. Shear wave measurements in laboratory sediments. Journal of the Acoustical Society of America, v. 63, p. 607–613.

    Article  Google Scholar 

  • Snoek, M., and D. Rauch, 1987. Anisotropic behavior of interface wave propagation for near surface sediments. In: Lara-Saenz, A., C. Ranz-Guerra, and C. Carbo-Fite (eds.), Acoustics and Ocean Bottom, II FASE Specialized Conference. Consejo de Investigaciones Cientiticas, Madrid, p. 201– 210.

    Google Scholar 

  • Snoek, M., G. Guidi, and E. Michelozzi, 1986. Interface waves studies on the Ligurian shelf using an OBS array. In: Akal, T., and J. M. Berkson (eds.), Ocean Seismo-Acoustics. Plenum Press, London, p. 663–672.

    Google Scholar 

  • Stokoe, K. H., and F. E. Richart, 1975. In Situ and laboratory shear wave velocities. Proceedings of the Eighth International Conference on Soil Mechanics and Foundation Engineering, v. 1, Moscow, p. 403–409.

    Google Scholar 

  • Stoll, R. D., 1980. Theoretical aspects of sound transmission in sediments. Journal of the Acoustical Society of America, v. 68, p. 1341–1350.

    Article  Google Scholar 

  • Stoll, R. D., G. M. Bryan, R. Flood, D. Chayes, and P. Manley, 1988. Shallow seismic experiments using shear waves. Journal of the Acoustical Society of America, v. 83, p. 93–102.

    Article  Google Scholar 

  • Warrick, R. E., 1974. Seismic investigation of a San Francisco Bay mud site. Bulletin of the Seismological Society of America, v. 64, p. 375–385.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Richardson, M.D., Muzi, E., Troiano, L., Miaschi, B. (1991). Sediment Shear Waves: A Comparison of In Situ and Laboratory Measurements. In: Bennett, R.H., et al. Microstructure of Fine-Grained Sediments. Frontiers in Sedimentary Geology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4428-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4428-8_44

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8766-7

  • Online ISBN: 978-1-4612-4428-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics