Equivalence and Duality for Module Categories

  • Frank W. Anderson
  • Kent R. Fuller
Part of the Graduate Texts in Mathematics book series (GTM, volume 13)


So far our emphasis has been on studying rings in terms of the module categories they admit—that is, in terms of the representations of the rings as endomorphism rings of abelian groups. As we shall see the Wedderburn Theorem for simple artinian rings can be interpreted as asserting that a ring R is simple artinian if and only if the category R M is “the same” as the category D M for some division ring D. On the other hand, if D is a division ring, then the theory of duality from elementary linear algebra asserts that the categories D FM and FM D of finitely generated left D-vector spaces and right D-vector spaces are “duals” of one another.


Full Subcategory Projective Module Module Category Division Ring Natural Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Frank W. Anderson
    • 1
  • Kent R. Fuller
    • 2
  1. 1.Department of MathematicsUniversity of OregonEugeneUSA
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations