Skip to main content

Organization of Olivocochlear Efferent Systems in Mammals

  • Chapter
The Mammalian Auditory Pathway: Neuroanatomy

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 1))

Abstract

The decade of the eighties witnessed important advances in our under-standing of virtually every aspect of hearing, including the basic innervation pattern of the organ of Corti. With the aid of such powerful techniques as retrograde and anterograde transport of tracers, anatomical reconstruction from serial images, the combination of single unit electrophysiology with intracellular fiber staining and immunocytochemical localization of neuroactive substances, these research endeavors revealed a quite unexpected degree of specificity in the detailed anatomy of various types of auditory neurons, both afferent and efferent. Taken in their entirety, these new findings have required major modifications in our views of the underlying neuronal mechanisms involved in the process of hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Madi L, Pontarotti P, Tramu G, Gupo A, Eybalin M (1987) Coexistence of putative neuroactive substances in lateral olivocochlear neurons of rat and guinea pig. Hear Res 30: 135–146.

    PubMed  CAS  Google Scholar 

  • Adams JC (1982) Collaterals of labyrinthine efferent axons. Soc Neurosci Abs 8: 149.

    Google Scholar 

  • Adams JC (1983) Cytology of periolivary cells and the organization of their projections in cat. J Comp Neurol 215: 275–289.

    PubMed  CAS  Google Scholar 

  • Adams JC (1986) Cells of origin of cochlear efferents in human. Assoc Res Otolaryngol Abs 9: 5.

    Google Scholar 

  • Altschuler RA, Fex J, Parakkal MH, Eckenstein F (1984) Colocalization of enkephalin-like and choline acetyltransferase-like immunoreactivities in olivocochlear neurons of the guinea pig. J Histochem Cytochem 32: 839–843.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Kachar B, Rubio J A, Parakkal MH, Fex J (1985) Immunocyto-chemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 338: 1–11.

    PubMed  CAS  Google Scholar 

  • Arnesen AR (1984) Fiber population of the vestibulocochlear anastomosis in humans. Acta Otolaryngol (Stockh) 98: 501–518.

    CAS  Google Scholar 

  • Arnesen AR, Osen KK (1978) The cochlear nerve in the cat: Topography, cochleotopy, and fiber spectrum. J Comp Neurol 178: 661–673.

    PubMed  CAS  Google Scholar 

  • Arnesen AR, Osen KK (1984) Fiber population of the vestibulocochlear anastomosis in the cat. Acta Otolaryngol (Stockh) 98: 225–269.

    Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264: 56–72.

    PubMed  CAS  Google Scholar 

  • Aschoff A, Ostwald J (1988) Distribution of cochlear efferents and olivo-collicular neurons in the brainstem of rat and guinea pig: A double labeling study with fluorescent tracers. Exp Brain Res 71: 241–251.

    PubMed  CAS  Google Scholar 

  • Aschoff A, Muller M, Ott H (1988) Origin of cochlear efferents in some gerbil species. Exp Brain Res 71: 252–262.

    PubMed  CAS  Google Scholar 

  • Benson TE, Brown MC (1990) Synapses formed by olivocochlear axon branches in the mouse cochlear nucleus. J Comp Neurol 295: 52–70.

    PubMed  CAS  Google Scholar 

  • Bishop AL, Henson OW Jr (1987) The efferent cochlear projections of the superior olivary complex in the mustached bat. Hear Res 31: 175–182.

    PubMed  CAS  Google Scholar 

  • Bishop AL, Henson OW Jr (1987a) The olivocochlear system in Doppler-shift compensating bats. In: Nachtigal PE (ed) Animal Sonar Systems II, Vol. II. New York: Plenum Press.

    Google Scholar 

  • Bodian D (1983) Electron microscopic atlas of the simian cochlea. Hear Res 9: 201–246.

    PubMed  CAS  Google Scholar 

  • Bodian D, Gucer C (1980) Denervation study of synapses of organ of Corti of old world monkeys. J Comp Neurol 192: 785–796.

    PubMed  CAS  Google Scholar 

  • Brown MC (1987) Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260: 605–618.

    PubMed  CAS  Google Scholar 

  • Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear Res 40: 93–109.

    PubMed  CAS  Google Scholar 

  • Brown MC, Pierce S, Berglund AM (1991) Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: A cochleotopic projection. J Comp Neurol 303: 300–315.

    PubMed  CAS  Google Scholar 

  • Brown MC, Liberman MC, Benson TE, Ryugo DK (1988a) Brainstem branches of olivocochlear axons in cats and rodents. J Comp Neurol 278: 591–603.

    PubMed  CAS  Google Scholar 

  • Brown MC, Berglund AM, Kiang NYS, Ryugo DK (1988b) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278: 581–590.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11: 82–92.

    PubMed  CAS  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea. Hear Res 3: 27–43.

    Google Scholar 

  • Buno W (1978) Auditory-nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59: 62–74.

    PubMed  Google Scholar 

  • Campbell JP, Henson MM (1988) Olivocochlear neurons in the brainstem of the mouse. Hear Res 35: 271–274.

    PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227: 63–77.

    PubMed  CAS  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457–477.

    PubMed  CAS  Google Scholar 

  • Churchill JA, Schuknecht HF (1959) The relationship of the acetylcholinesterase in the cochlea to the olivocochlear bundle. Henry Ford Hosp Med Bull 7: 202–205.

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1982) Acoustically evoked activity of single efferent neurons in the guinea pig cochlea. J Acoust Soc Am 72: 280–282.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in elec- trokinetic shape changes of cochlear outer hair cells. Nature 350: 155–157.

    PubMed  CAS  Google Scholar 

  • Dunn RA, Morest DK (1975) Receptor synapses without synaptic ribbons in the cochlea of the cat. Proc Natl Acad Sei USA 72: 3599–3603.

    CAS  Google Scholar 

  • Eybalin M, Altschuler RA (1990) Immunoelectron microscopic localization of neurotransmitters in the cochlea. J Elect Micros Tech 15: 209–224.

    CAS  Google Scholar 

  • Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261 –270.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea pig organ of Corti. Neurosci 24: 29–38.

    CAS  Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat Embryol 175: 35–52.

    PubMed  CAS  Google Scholar 

  • Fex J (1965) Auditory activity in uncrossed centrifugal cochlear fibers in cat. Acta Physiol Scand 64: 43–57.

    PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA (1984) Glutamic acid decarboxylase immunoreactivity of cochlear neurons in the organ of Corti of guinea pig and rat. Hear Res 15: 123–131.

    PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA (1986) Neurotransmitter related immunocytochemistry of the organ of Corti. Hear Res 22: 249–263.

    PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA, Kachar B, Wenthold RJ, Zempel JM (1986) GABA visualized by immunocytochemistry in the guinea pig cochlea in axons and endings of efferent neurons. Brain Res 366: 106–117.

    PubMed  CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73: 263–284.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Dubuc R, Ohta H, Grillner S (1989) Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques. Neurosci Lett 96: 241–246.

    PubMed  CAS  Google Scholar 

  • Gacek RR (1961) The efferent cochlear bundle in man. Arch Otolaryngol 74: 690–694.

    PubMed  CAS  Google Scholar 

  • Ginzberg RD, Morest DK (1984) Fine structure of cochlear innervation in the cat. Hear Res 14: 109–127.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Park-Hellendall JL, Dunn JD, Ross CD (1987) Effect of olivocochlear bundle transection of choline acetyltransferase activity in the rat cochlear nucleus. Hear Res 28: 237–251.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Beranek KL, Carlson L, Parli JA, Dunn JD, Ross CD (1990) Con-tribution of centrifugal innervation to choline acetyltransferase activity in the cat cochlear nucleus. Hear Res 49: 259–280.

    PubMed  CAS  Google Scholar 

  • Guinan JJ Jr (1988) Physiology of the olivocochlear efferents. In: Syka J, Masterton RB (eds) Auditory Pathways: Structure and Function, New York: Plenum Press, pp. 253–267.

    Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II: Location of unit categories and tonotopic organization. Int J Neurosci 4: 147–166.

    Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221: 358–373.

    PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the oli-vocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226: 21–27.

    PubMed  Google Scholar 

  • Helfert RH, Schwartz IR (1987) Morphological features of five neuronal classes in the gerbil lateral superior olive. Am J Anat 179: 55–69.

    PubMed  CAS  Google Scholar 

  • Helfert RH, Schwartz IR, Ryan AF (1988) Ultrastructural characterization of gerbil olivocochlear neurons based on differential uptake of 3H-d-aspartic acid and a wheatgerm agglutinin-horseradish peroxidase conjugate of the cochlea. J Neurosci 8: 3111–3123.

    PubMed  CAS  Google Scholar 

  • Huffman RF, Henson OW Jr (1990) The descending auditory pathway and acous- ticomotor systems: connections with the inferior colliculus. Brain Res Rev 15: 295–323.

    PubMed  CAS  Google Scholar 

  • Ishii T, Murakami Y, Balogh KJ (1967) Acetylcholinesterase activity in the efferent nerve fibers of the human inner ear. Ann Otol Rhinol Laryngol 76: 69–82.

    PubMed  CAS  Google Scholar 

  • Iurato S, Smith CA, Eldredge DH, Henderson D, Carr C, Ueno Y, Cameron S, Richter R (1978) Distribution of the crossed olivocochlear bundle in the chinchilla’s cochlea. J Comp Neurol 182: 57–76.

    PubMed  CAS  Google Scholar 

  • Joseph MP, Guinan JJ Jr, Fullerton BC, Norris BE, Kiang NYS (1985) Number and distribution of stapedius motoneurons in cats. J Comp Neurol 232: 43–54.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Guinan JJ Jr, Liberman MC, Brown MC, Eddington DK (1987) Feedback control mechanisms of the auditory periphery: Implications for cochlear implants. In: Banfai P (ed) Cochlear Implant: Current Situation. International Cochlear Implant Symposium.

    Google Scholar 

  • Kiang NYS, Rho JM, Northrup CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cat. Science 217: 175–177.

    PubMed  CAS  Google Scholar 

  • Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer- hair-cell subsystem in the mammalian auditory system. Hear Res 22: 105–114.

    PubMed  CAS  Google Scholar 

  • Kimura RS (1984) Sensory and Accessory Epithelia of the Cochlea. In: Friedman I, Ballantyne J (eds) Ultrastructural Atlas of the Inner Ear, 1st Ed, Vol 1. London: Butterworth.

    Google Scholar 

  • Kimura RS, Wersall J (1962) Termination of the olivocochlear bundle in relation to the outer hair cells of the organ of Corti in guinea pigs. Acta Otolaryngol (Stockh) 55: 11–32.

    CAS  Google Scholar 

  • Liberman MC (1980a) Efferent synapses in the inner hair cell area of the cat cochlea: An electron microscopic study of serial sections. Hear Res 3: 189–204.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980b) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3: 45–63.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216: 1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1988) Response properties of cochlear efferent neurons: Monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60: 1779–1798.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory- nerve response. Hear Res 49: 209–224.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1991) The olivocochlear efferent bundle and the susceptibility of the inner ear to acoustic injury. J Neurophysiol 65: 123–132.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24: 17–36.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellular labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223: 163–176.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. J Comp Neurol 301: 443–460.

    PubMed  CAS  Google Scholar 

  • Lu SM, Schweitzer L, Cant NB, Dawbarn D (1987) Immunoreactivity to calcitonin gene-related peptide in the superior olivary complex and cochlea of cat and rat. Hear Res 31: 137–146.

    PubMed  CAS  Google Scholar 

  • Meredith GE (1988) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biol Hung 39: 229–249.

    PubMed  CAS  Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154: 393–418.

    PubMed  CAS  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse. J Comp Neurol 191: 581–606.

    PubMed  CAS  Google Scholar 

  • Nakai Y, Igarashi M (1974) Distribution of the crossed olivocochlear bundle terminals in the squirrel monkey cochlea. Acta Otolaryngol (Stockh) 77: 393–404.

    CAS  Google Scholar 

  • Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9: 123–130.

    PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136: 453–484.

    PubMed  CAS  Google Scholar 

  • Osen KK, Roth K (1969) Histochemical localization of cholinesterases in the cochlear nuclei of the cat, with notes on the origin of acetylcholinesterase- positive afferents and the superior olive. Brain Res 16: 165–185.

    PubMed  CAS  Google Scholar 

  • Osen KK, Mugnaini E, Dahl A-L, Christiansen AH (1984) Histochemical localization of acetylcholinesterase in the cochlear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cells system. Arch Ital Biol 122: 169–212.

    PubMed  CAS  Google Scholar 

  • Parnes SM, Strominger NL, Silver SM, Strominger RN (1986) Studies of the primate olivocochlear bundle. Assoc Res Otolaryngol Abs 9: 37.

    Google Scholar 

  • Pujol R, Lenoir M (1986) The four types of synapses in the organ of Corti. In: Altschuler RA, Bobbin RP, Hoffman DW (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press.

    Google Scholar 

  • Rajan R (1990) Functions of the efferent pathways to the mammalian cochlea. In: Rowe M, Aitkin L (eds) Neurology and Neurobiology, Vol 56: Information Processing in Mammalian Auditory and Tactile Systems. New York: Alan R Liss, Inc.

    Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84: 141–219.

    PubMed  CAS  Google Scholar 

  • Rasmussen GL (1953) Further observations on the efferent cochlear bundle. J Comp Neurol 99: 61–74.

    PubMed  CAS  Google Scholar 

  • Rasmussen GL (1960) Efferent fibers of the cochlear nerve and cochlear nucleus. In: Windle WF, Rasmussen GL (eds) Neural Mechanisms of Auditory and Vestibular Systems. Springfield, IL: Carles C. Thomas.

    Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Gorner P, Münz H (eds) The Mechanosensory Lateral Line. New York: Springer-Verlag.

    Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15: 113–121.

    PubMed  CAS  Google Scholar 

  • Robertson D (1985) Brainstem location of efferent neurones projecting to the guinea pig cochlea. Hear Res 20: 79–84.

    PubMed  CAS  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20: 63–77.

    PubMed  CAS  Google Scholar 

  • Robertson D, Cole KS, Harvey AR (1987a) Brainstem organization of efferent projections to the guinea pig cochlea studied using the fluorescent tracers fast blue and diamidino yellow. Exp Brain Res 66: 449 - 457.

    PubMed  CAS  Google Scholar 

  • Robertson D, Cole KS, Corbett K (1987b) Quantitative estimate of binaurally projecting medial olivocochlear neurons in the guinea pig brainstem. Hear Res 27: 177–181.

    PubMed  CAS  Google Scholar 

  • Robertson D, Anderson C-J, Cole KS (1987c) Segregation of efferent projections to different turns of the guinea pig cochlea. Hear Res 25: 69–76.

    PubMed  CAS  Google Scholar 

  • Robertson D, Harvey AR, Cole KS (1989) Postnatal development of the efferent innervation of the rat cochlea. Develop Brain Res 47: 197–207.

    CAS  Google Scholar 

  • Ryan AF, Schwartz IR (1986) Nipecotic acid: Preferential accumulation in the cochlea by GABA uptake systems and selective retrograde transport to brainstem. Brain Res 399: 399–403.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Keithley EM, Wang Z-X, Schwartz IR (1990) Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem. J Comp Neurol 300: 572–582.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Schwartz IR, Helfert RH, Keithley E, Wang Z-X (1987) Selective retrograde labeling of lateral olivocochlear neurons in the brainstem based on preferential uptake of 3H-D-aspartic acid in the cochlea. J Comp Neurol 255: 606–616.

    PubMed  CAS  Google Scholar 

  • Saldana E (1990) The rat colliculo-olivary projection is tonotopic. Soc Neurosci Abs 16: 716.

    Google Scholar 

  • Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8: 682–700.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Goldstein NA, Ostad M, Hillman DE (1990) Dendritic morphology of central auditory neurons correlates with their tonotopic position. J Comp Neurol 294: 443–454.

    PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1974) Neuropil organization in the superior olive of the cat. Exp Neurol 43: 339–348.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Liberman MC (1988) Afferent innervation of outer hair cells in adult cats: I. Light microscopic analysis of fibers labeled with horseradish peroxidase. J Comp Neurol 270: 132–144.

    PubMed  CAS  Google Scholar 

  • Smith CA (1961) Innervation pattern of the cochlea. The internal hair cell. Ann Otol Rhinol Laryngol 70: 504–527.

    Google Scholar 

  • Smith CA, Rasmussen GL (1963) Recent observation of the olivocochlear bundle. Ann Otol Rhinol Laryngol 72: 489–505.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB (1991) The descending auditory system. In: Altschuler R, Hoffman DW, Bobbin RP, Clopton BM (eds) The Neurobiology of Hearing, 1st Ed, Vol I I. New York: Raven Press.

    Google Scholar 

  • Spangler KM, White JS, Warr WB (1985) The light and electron microscopic features of olivocochlear neurons in the cat. Anat Ree 211: 182.

    Google Scholar 

  • Spangler KM, White JS, Warr WB (1986) Electron microscopic features of axon terminals on olivocochlear neurons in the cat. Assoc Res Otolaryngol Abs 9: 37–38.

    Google Scholar 

  • Spangler KS, Warr WB (1987) Transneuronal changes in cochlear radial afferent fibers following destruction of lateral olivocochlear neurons. Soc Neurosci Abs 13: 1258.

    Google Scholar 

  • Spoendlin H (1966) The organization of the cochlear receptor. Adv Oto-Rhino- Laryngol 13: 1–114.

    CAS  Google Scholar 

  • Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: Plomp R, Smoorenburg FG (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff.

    Google Scholar 

  • Spoendlin H (1971) Degeneration behavior of the cochlear nerve. Arch klin exp Ohr- Nas-u KehlkHeilk 200: 275–291.

    CAS  Google Scholar 

  • Spoendlin H (1984) Primary neurons and synapses. In: Friedman I, Ballantyne J (eds) Ultrastructural Atlas of the Inner Ear. London: Butterworths.

    Google Scholar 

  • Stopp PE (1983) The distribution of the olivo-cochlear bundle and its possible role in frequency/intensity coding. In: Klinke R, Hartmann R (eds) Hearing- Physiological Bases and Psychophysics. Berlin: Springer-Verlag.

    Google Scholar 

  • Stopp PE (1990) The problem of obtaining reproducible quantitative data on the olivocochlear pathway as exemplified in the guinea pig. Eur Arch Otorhinolaryngol 247: 29–32.

    PubMed  CAS  Google Scholar 

  • Strominger NL, Silver SM, Truscott TC, Goldstein JC (1981) The cells of origin of the olivocochlear bundle in new and old world monkeys. Anat Ree 199: 246.

    Google Scholar 

  • Swett JE, Wikholm RP, Blanks RHI, Swett AL, Conley LC (1986) Motoneurons of the rat sciatic nerve. Exp Neurol 93: 227–252.

    PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1988) Neural connections identified with PHA- L anterograde and HRP retrograde tract-tracing techniques. J Neurosci Methods 25: 13–17.

    PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303: 267–285.

    PubMed  CAS  Google Scholar 

  • Thompson GC, Thompson AM (1986) Olivocochlear neurons in the squirrel monkey brainstem. J Comp Neurol 254: 246–258.

    PubMed  CAS  Google Scholar 

  • Thompson GC, Cortez AM, Igarashi M (1986) GABA-like immunoreactivity in the squirrel monkey organ of Corti. Brain Res 372: 72–79.

    PubMed  CAS  Google Scholar 

  • Tokunaga A (1988) Superior olivary and lateral lemniscal neurons projecting to the cochlea in the guinea pig. Neurosci Res 6: 20–30.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40: 296–318.

    PubMed  CAS  Google Scholar 

  • Usami S, Igarashi M, Thompson GC (1988) Light- and electron-microscopic study of gamma-aminobutyric-acid-like immunoreactivity in the guinea pig organ of Corti. ORL 50: 162–169.

    PubMed  CAS  Google Scholar 

  • Vater M, Feng AS (1990) Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol 292: 373–395.

    PubMed  CAS  Google Scholar 

  • Vetter DE, Mugnaini E (1990) An evaluation of retrograde tracing methods for the identification of chemically distinct cochlear efferent neurons. Arch Ital Biol 128: 331–353.

    PubMed  CAS  Google Scholar 

  • Vetter DE, Mugnaini E Distribution and dendritic features of three groups of rat olivocochlear neurons: A study with two retrograde cholera toxin tracers. Anat Embryol (submitted).

    Google Scholar 

  • Vetter DE, Saldana E (1990) Descending input from the central nucleus of the inferior colliculus to the medial olivocochlear system in rat: a combined PhaL and CT-HRP study. Soc Neurosci Abs 16: 716.

    Google Scholar 

  • Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7: 21–43.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, Romand R (1992) Functional development of the cochlea and the cochlear nerve. In: Romand R (ed) Development of Auditory and Vestibular Systems, 2nd Ed. Amsterdam: Elsevier.

    Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–182.

    PubMed  CAS  Google Scholar 

  • Warr WB (1980) Efferent components of the auditory system. Ann Otol Rhinol Laryngol 89 (Suppl 74): 114–120.

    CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. Contrib Sens Physiol 7: 1–38.

    Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173: 152–155.

    PubMed  CAS  Google Scholar 

  • Warr WB, Spangler KM (1989) A novel projections of the ventral nucleus of the trapezoid body in the rat. Soc Neurosci Abs 15: 745.

    Google Scholar 

  • Warr WB, Guinan JJ Jr, White JS (1986) Organization of the efferent fibers: The lateral and medial olivocochlear systems. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea, 1st Ed. New York: Raven Press.

    Google Scholar 

  • Warr WB, White JS, Nyffeler MJ (1982) Olivocochlear neurons: Quantitative comparison of the lateral and medial efferent systems in adult and newborn cats. Soc Neurosci Abs 8: 346.

    Google Scholar 

  • Warren EH III, Liberman MC (1989) Effects of contralateral sound of auditory- nerve responses. I. Contributions of cochlear efferents. Hear Res 37: 89–104.

    PubMed  Google Scholar 

  • White JS (1983) Fine structure of the lateral superior olivary nucleus. Soc Neurosci Abs 9: 765.

    Google Scholar 

  • White JS (1986) Differences in the ultrastructure of labyrinthine efferent neurons in the albino rat. Assoc Res Otolaryngol Abs 9: 34–35.

    Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219: 203–214.

    PubMed  CAS  Google Scholar 

  • White JS, Robertson D, Wan WB (1986) Electron-microscopic observations on an HRP-filled, physiologically characterized medial olivocochlear axon in the guineapig cochlea. Soc Neurosci Abs 12: 1264.

    Google Scholar 

  • Whitlon DS, Sobkowicz HM (1989) GABA-like immunoreactivity in the cochlea of the developing mouse. J Neurocytol 18: 505–518.

    PubMed  CAS  Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians: Peripheral and central distribution. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. New York: John Wiley & Sons.

    Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians: Peripheral and central distribution. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. New York: John Wiley & Sons.

    Google Scholar 

  • Winter IM, Robertson D, Cole KS (1989) Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig. J Comp Neurol 280: 143–157.

    PubMed  CAS  Google Scholar 

  • Wright CG, Preston RE (1973) Degeneration and distribution of efferent nerve fibers in the guinea pig organ of Corti. A light and scanning electron microscopic study. Brain Res 58: 37–59.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Warr, W.B. (1992). Organization of Olivocochlear Efferent Systems in Mammals. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4416-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4416-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97800-0

  • Online ISBN: 978-1-4612-4416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics