Skip to main content

The Cochlear Nucleus: Neuronal Types and Their Synaptic Organization

  • Chapter
The Mammalian Auditory Pathway: Neuroanatomy

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 1))

Abstract

The auditory system, like other sensory systems, comprises multiple neuronal pathways, each conveying information from the periphery to the forebrain via distinct sets of neurons and each with its own role to play in the function of the system. In the cochlear nuclear complex, the part of the brain that receives inputs from the cochlea via the eighth nerve, the neurons that participate in the separate pathways are, to a large extent, distinguishable from one another morphologically and many are also segregated spatially, making them especially accessible for detailed study. The results of detailed anatomical studies of the different cell types provide a framework for relating and interpreting the results of studies of the physiology, connectivity and transmitter neurochemistry of the different pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1983) Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neurosci Lett 37: 205–208.

    PubMed  CAS  Google Scholar 

  • Adams JC (1986) Neuronal morphology in the human cochlear nucleus. Arch Otolaryngol Head Neck Surg 112: 1253–1261.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mugnaini E (1987) Patterns of glutamate decarboxylase immune-staining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J Comp Neurol 262: 375–401.

    PubMed  CAS  Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 182: 519–538.

    Google Scholar 

  • Adams JC, Wenthold RJ (1987) Immunostaining of GABA-ergic and glycinergic inputs to the anteroventral cochlear nucleus. Soc Neurosci Abstr 13: 1259.

    Google Scholar 

  • Altschuler RA, Betz H, Parakkal MH, Reeks KA, Wenthold RJ (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocyto- chemical localization of the postsynaptic receptor. Brain Res 369: 316–320.

    PubMed  CAS  Google Scholar 

  • Arnesen AR, Osen KK (1978) The cochlear nerve in the cat: Topography, cochleoptopy and fiber spectrum. J Comp Neurol 178: 661–678.

    PubMed  CAS  Google Scholar 

  • Bacsik RD, Strominger NL (1973) The cytoarchitecture of the human anteroventral cochlear nucleus. J Comp Neurol 147: 281–290.

    PubMed  CAS  Google Scholar 

  • Benson CG, Potashner SJ (1990) Retrograde transport of [3H] glycine from the cochlear nucleus to the superior olive in the guinea pig. J Comp Neurol 296: 415–426.

    PubMed  CAS  Google Scholar 

  • Benson TE, Brown MC (1990) Synapses formed by olivocochlear axon branches in the mouse cochlear nucleus. J Comp Neurol 295: 52–70.

    PubMed  CAS  Google Scholar 

  • Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurones of the dorsal cochlear nucleus: A Golgi and computer reconstruction study in cat. Neuro-science 13: 827–854.

    CAS  Google Scholar 

  • Bourk TR (1976) Electrical response of neural units in the anteroventral cochlear nucleus of the cat. Massachusetts Institute of Technology, Ph.D. Dissertation, Cambridge, MA.

    Google Scholar 

  • Bourk TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hear Res 4: 215–241.

    PubMed  CAS  Google Scholar 

  • Brawer, JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 160: 491–506.

    Google Scholar 

  • Brown, MC, Berglund AM, Kiang NYS, Ryugo DK (1988a) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278: 581–590.

    PubMed  CAS  Google Scholar 

  • Brown, MC, Liberman MC, Benson TE, Ryugo DK (1988b) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278: 591–603.

    PubMed  CAS  Google Scholar 

  • Browner RH, Baruch A (1982) The cytoarchitecture of the dorsal cochlear nucleus in the 3-month- and 26-month-old C57BL/6 mouse: A Golgi impregnation study. J Comp Neurol 211: 115–138.

    PubMed  CAS  Google Scholar 

  • Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6: 2643–2655.

    PubMed  CAS  Google Scholar 

  • Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32: 241–246.

    PubMed  CAS  Google Scholar 

  • Cant NB (1991) Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In: Altschuler RA, Hoffman DW, Bobbin RB, Clopton B (eds) Neurobiology of Hearing, Vol. 2, The Central Auditory System. New York: Raven Press, pp. 99–119.

    Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457–476.

    PubMed  CAS  Google Scholar 

  • Cant NB, Gaston KC (1982) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212: 313–326.

    PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1978) Axons from non-cochlear sources in the anterov- entral cochlear nucleus of the cat. A study with the rapid Golgi method. Neuroscience 3: 1003–1029.

    PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1979a) Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience 4: 1909–1923.

    PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1979b) . Neuroscience 4: 1925–1945.

    PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1984) The structural basis for stimulus coding in the cochlear nucleus of the cat. In: Berlin CI (ed) Hearing Science: Recent Advances. San Diego: College-Hill Press, pp. 371–421.

    Google Scholar 

  • Chamberlain SC (1977) Neuroanatomical aspects of the gerbil inner ear: Light microscopic observations. J Comp Neurol 171: 193–204.

    PubMed  CAS  Google Scholar 

  • Conlee JW, Kane ES (1982) Descending projections from the inferior colliculus to the dorsal cochlear nucleus in the cat: an autoradiographic study. Neuroscience 7: 161–178.

    PubMed  CAS  Google Scholar 

  • Disterhoff JF, Perkins RE, Evans S (1980) Neuronal morphology of the rabbit cochlear nucleus. J Comp Neurol 192: 687–702.

    Google Scholar 

  • Elverland HH (1977) Descending connections between the superior olivary and cochlear nuclear complexes in the cat studied by autoradiographic and horseradish peroxidase methods. Exper Brain Res 27: 397–412.

    CAS  Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Exp Brain Res 40: 115–118.

    PubMed  CAS  Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1982) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229: 432–450.

    Google Scholar 

  • Feng A, Vater M (1985) Functional organization of the cochlear nucleus of rufous horseshoe bats ( Rhinolophus rouxi ): Frequencies and internal connections are arranged in slabs. J Comp Neurol 235: 529–553.

    PubMed  CAS  Google Scholar 

  • Fuse G (1913) Das Ganglion ventrale und das Tuberculum acusticum beim einigen Säuglingen und beim Menschen. Arbeiten aus dem Hirnanatomischen Institut in Zuerich, 7: 1–210.

    Google Scholar 

  • Gentschev T, Sotelo C (1973) Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study. Brain Res 62: 37–60.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162: 247–268.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Carter JA, Berger SJ, Lowry OH, Matschinsky FM (1977) Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus. J Histochem Cytochem 25: 417–431.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Williams AD, Matchinsky FM (1977) Quantitative histochemical mapping of enzymes of the cholinergic system in cat cochlear nucleus. J Histochem Cytochem 25: 397–416.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Carter JA, Lowry OH, Matschinsky FM (1978) Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat. J Histochem Cytochem 26: 118–126.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Pick GF (1986) The distribution of spherical cells in the anteroventral cochlear nucleus of the guinea pig. Br J Audiology 20: 215–220.

    CAS  Google Scholar 

  • Harrison JM, Feldman ML (1970) Anatomical aspects of the cochlear nucleus and superior olivary complex. Contrib Sensory Physiol 4: 95–142.

    CAS  Google Scholar 

  • Harrison JM, Irving R (1965) The anterior ventral cochlear nucleus. J Comp Neurol 124: 15–42.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966a) Ascending connections of the anterior ventral cochlear nucleus in the rat. J Comp Neurol 126: 51–64.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966b) The organization of the posterior ventral cochlear nucleus in the rat. J Comp Neurol 126: 391–402.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Warr WB (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119: 341–379.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Warr WB, Irving R (1962) Second order neurons in the acoustic nerve. Science 138: 893–895.

    PubMed  CAS  Google Scholar 

  • Held H (1891) Die centralen Bahnen des Nervus acusticus bei der Katze. Arch Anat Physiol Anat Abtil 15: 271–291.

    Google Scholar 

  • Hirsch JA, Oertel D (1988) Synaptic connections in the dorsal cochlear nucleus of mice, in vitro. J Physiol 396: 549–562.

    PubMed  CAS  Google Scholar 

  • Ibata Y, Pappas GD (1976) The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear [nucleus] of the cat. J Neurocyte 5: 395–406.

    CAS  Google Scholar 

  • Jones DR, Casseday JH (1979) Projections to laminae in dorsal cochlear nucleus in the tree shrew, Tupaia glis. Brain Res 160: 131–133.

    Google Scholar 

  • Kane ESC (1973) Octopus cells in the cochlear nucleus of the cat: Heterotypic synapses upon homeotypic neurons. Int J Neurosci 5: 251–279.

    PubMed  CAS  Google Scholar 

  • Kane ES (1974a) Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study. J Comp Neurol 155: 301–330.

    PubMed  CAS  Google Scholar 

  • Kane ES (1974b) Patterns of degeneration in the caudal cochlear nucleus of the cat after cochlear ablation. Anat Ree 179: 67–92.

    CAS  Google Scholar 

  • Kane ES (1976) Descending projections to specific regions of cat cochlear nucleus: A light microscopic study. Exper Neurol 52: 372–388.

    CAS  Google Scholar 

  • Kane ES (1977a) Descending inputs to the octopus cell area of the cat cochlear nucleus: an electron microscopic study. J Comp Neurol 173: 337–354.

    PubMed  CAS  Google Scholar 

  • Kane ES (1977b) Descending inputs to the cat dorsal cochlear nucleus: An electron microscopic study. J Neurocytol 6: 583–605.

    PubMed  CAS  Google Scholar 

  • Kane ES, Conlee JW (1979) Descending inputs to the caudal cochlear nucleus of the cat: Degeneration and autoradiographic studies. J Comp Neurol 4: 759–783.

    Google Scholar 

  • Kane ES, Finn RC (1977) Descending and intrinsic inputs to dorsal cochlear nucleus of cats: A horseradish peroxidase study. Neuroscience 2: 897–912.

    Google Scholar 

  • Kane ES, Puglisi SG, Gordon BS (1981) Neuronal types in the deep dorsal cochlear nucleus of the cat. I. Giant neurons. J Comp Neurol 198: 483–513.

    PubMed  CAS  Google Scholar 

  • Kölliker A (1896) Handbuch der Gewebelehre des Menschern Bd. 2. Leipzig: Wilhelm Engelman.

    Google Scholar 

  • Konigsmark BW (1973) Cellular organization of the cochlear nuclei in man. J Neuropath Exp Neurol 32: 153–154.

    Google Scholar 

  • Kromer LF, Moore RY (1976) Cochlear nucleus innervation by central norepinephrine neurons in the rat. Brain Res 118: 531–537.

    PubMed  CAS  Google Scholar 

  • Kudo M, Nakamura Y, Tokuno H, Kitao Y (1990) Auditory brain stem in the mole (Mogera): Nuclear configurations and the projections to the inferior colliculus. J Comp Neurol 298: 400–412.

    PubMed  CAS  Google Scholar 

  • Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281: 612–629.

    PubMed  CAS  Google Scholar 

  • Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118: 375–390.

    PubMed  CAS  Google Scholar 

  • Liberman, MC (1978) Auditory-nerve response from cats raised in a low-noise environment. J Acoust Soc Am 63: 442–455.

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1933) Anatomy of the eighth nerve—III. General plans of structure of the primary cochlear nuclei. Laryngoscope 43: 327–350.

    Google Scholar 

  • Lorente de No R (1976) Some unresolved problems concerning the cochlear nerve. Ann Otol Rhinol Lar Suppl 34, Vol 85: 1–28.

    Google Scholar 

  • Lorente de No R (1981) The Primary Acoustic Nuclei. New York: Raven Press.

    Google Scholar 

  • McDonald DM, Rasmussen GL (1971) Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity. Brain Res 28: 1–18.

    PubMed  CAS  Google Scholar 

  • Manis PB (1989) Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J Neurophysiol 61: 149–161.

    PubMed  CAS  Google Scholar 

  • Martin MR (1981) Morphology of the cochlear nucleus of the normal and reeler mutant mouse. J Comp Neurol 197: 141–152.

    PubMed  CAS  Google Scholar 

  • Martin MR (1981b) Acetylcholinesterase-positive fibers and cell bodies in the cochlear nuclei of normal and reeler mutant mice. J Comp Neurol 197: 153–167.

    PubMed  CAS  Google Scholar 

  • Merchan MA, Collia F, Lopez DE, Saldana E (1988) Morphology of coclear root neurons in the rat. J. Neurocytol 17: 711–725.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Kitzes L, Aitkin L (1973) Anatomical and physiological evidence for auditory specialization in the mountain beaver (Aplodontia rufa). Brain Res 58: 331–344.

    PubMed  CAS  Google Scholar 

  • Moore JK (1980) The primate cochlear nuclei: loss oflamination as a phylogenetic process. J Comp Neurol 193: 609–629.

    PubMed  CAS  Google Scholar 

  • Moore JK (1986) Cochlear nuclei: Relationship to the auditory nerve. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 283–301.

    Google Scholar 

  • Moore JK, Moore RY (1987) Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. J Comp Neurol 260: 157–174.

    PubMed  CAS  Google Scholar 

  • Moore JK, Osen KK (1979a) The cochlear nuclei in man. J Comp Neurol 154: 393–418.

    CAS  Google Scholar 

  • Moore JK, Osen KK (1979b) The human cochlear nuclei. Exp Brain Res Suppl 11: 36–44.

    Google Scholar 

  • Morest DK, Hutson KA, Kwok S (1990) Cytoarchitectonic atlas of the cochlear nucleus of the chinchilla, Chinchilla laniger. J Comp Neurol 300: 230–248.

    PubMed  CAS  Google Scholar 

  • Mugnaini E (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry. J Comp Neurol 235: 61–81.

    PubMed  CAS  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse. J Comp Neurol 191: 581–606.

    PubMed  CAS  Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL, Korte G (1980) Fine structure of granule cells and related interaeurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 9: 537–570.

    PubMed  CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. J Comp Neurol 214: 131–143.

    PubMed  CAS  Google Scholar 

  • Oberdorfer MD, Parakkal MH, Altschuler RA, Wenthold RJ (1987) Colocalization of glycine and GABA in the cochlear nucleus. Neurosci Abstr 13: 544.

    Google Scholar 

  • Oberdorfer MD, Parakkal MH, Altschuler RA, Wenthold RJ (1988) Ultrastructural localization of GABA-immunoreactive terminals in the anteroventral cochlear nucleus of the guinea pig. Hear Res 33: 229–238.

    PubMed  CAS  Google Scholar 

  • Oertel D, Wu SH (1989) Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice. J Comp Neurol 283: 228–247.

    PubMed  CAS  Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizak C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295: 136–154.

    PubMed  CAS  Google Scholar 

  • Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: A light and electron microscopic study. J Comp Neurol 224: 155–172.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Potashner SJ, Jones DR, Morest DK (1983) Selective labelling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. J Neurosci 3: 455–472.

    PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136: 453–484.

    PubMed  CAS  Google Scholar 

  • Osen KK (1970) Course and termination of the primary afferents in the cochlear nuclei of the cat. Arch Ital Biol 108: 21–51.

    PubMed  CAS  Google Scholar 

  • Osen KK, Jansen J (1965) The cochlear nuclei in the common porpoise, Phocaena phocaena. J Comp Neurol 125: 223–258.

    Google Scholar 

  • Osen KK, Mugnaini E (1981) Neuronal circuits in the dorsal cochlear nucleus. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing, New York: Plenum, pp. 119–125.

    Google Scholar 

  • Osen KK, Roth K (1969) Histochemical localization of cholinesterases in the cochlear nuclei of the cat with notes on the origin of acetylcholinesterase-pos- itive afferents and the superior olive. Brain Res 16: 165–185.

    PubMed  CAS  Google Scholar 

  • Osen KK, Mugnaini E, Dahl A-L, Christiansen AH (1984) Histochemical localization of acetylcholinesterase in the cochlear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cell system. Arch Ital Biol 122: 169–212.

    PubMed  CAS  Google Scholar 

  • Osen KK, Ottersen OP, Storm-Mathisen J (1990) Colocalization of glycine-like and GABA-like immunoreactivities: A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Ottersen OP, Storm-Mathisen J (eds) Glycine Neurotransmission. New York: John Wiley & Sons, pp. 417–451.

    Google Scholar 

  • Osen KK, Lopez DE, Slyngstad TA, Ottersen OP, Storm-Mathisen J (1991) GABA-like and glycine-like immunoreactivities of the cochlear root nucleus in rat. J. Neurocytol 20: 17–25.

    PubMed  CAS  Google Scholar 

  • Ostapoff E-M, Morest DK (1984) Analysis of synapses to bushy cells in the posterior anteroventral cochlear nucleus ( AVCN-P) of the cat. Neurosci Abstracts 10: 842.

    Google Scholar 

  • Ostapoff E-M, Morest SK, Potashner SJ (1990) Uptake and retrograde transport of [3H] GABA from the cochlear nucleus to the superior olive in the guinea pig. J Chem Neuroanatomy 3: 285–295.

    CAS  Google Scholar 

  • OstapoffE-M, Staatz-Benson C, Morest DK, Potashner SJ, Saint Marie RL (1988) GABA and glycine immunoreactivity of descending and commissural inputs to the cochlear nucleus in guinea pig. Soc Neurosci Abstr 14: 489.

    Google Scholar 

  • Perry DR, Webster WR (1981) Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations. J Comp Neurol 197: 623–638.

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone burst stimulation. Exp Brain Res 1: 220–235.

    PubMed  CAS  Google Scholar 

  • Pirsig W (1968) Regionen, zelltypen und synapsen im ventralen nucleus cochlearis des meerschwinschens. Arch Klin Exp Ohr-Nas-Kehlkopfheilk 192: 333–350.

    CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Berlin: Springer-Verlag.

    Google Scholar 

  • Potashner SJ (1983) Uptake and release of D-aspartate in the guinea pig cochlear nucleus. J Neurochem 41: 1094–1101.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1909) Histologie du système nerveaux de l’homme et des vertébrés ( 1952 reprint). Madrid: Instituto Ramón y Cajal.

    Google Scholar 

  • Rasmussen GL (1960) Efferent fibers of the cochlear nerve and cochlear nucleus. In: Rasmussen GL, Windle W (eds) Neural Mechanisms of the Auditory and Vestibular system. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Rasmussen GL (1967) Efferent connections of the cochlear nucleus. In: Graham AB (ed) Sensorineural Hearing Processes and Disorders. Boston: Little, Brown.

    Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213: 448–463.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Smith PH, Oertel D (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J Comp Neurol 213: 426–447.

    PubMed  CAS  Google Scholar 

  • Roberts RC, Ribak CE (1987) GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol 258: 267–280.

    PubMed  CAS  Google Scholar 

  • Rodieck RW, Brening RK (1983) Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol 23: 121–164.

    PubMed  CAS  Google Scholar 

  • Romand R (1978) Survey of intracellular recording in the cochlear nucleus of the cat. Brain Res 148: 43–65.

    PubMed  CAS  Google Scholar 

  • Rose JE (1960) Organization of frequency sensitive neurons in the cochlear nuclear complex of the cat. In: Rasmussen GL, Windle W (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, IL: Charles C Thomas, pp. 116–136.

    Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hosp 104: 211–251.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225: 167–186.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. J Comp Neurol 249: 261–278.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Rouiller EM (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. J Comp Neurol 271: 130–142.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Willard FH (1985) The dorsal cochlear nucleus of the mouse: A light microscopic analysis of neurons that project to the inferior colliculus. J Comp Neurol 242: 381–396.

    PubMed  CAS  Google Scholar 

  • Saint Marie RL, Benson CG, Ostapoff E-M, Morest DK (1991) Glycine immu- noreactive projections from the dorsal to the anteroventral coclear nucleus. Hearing Res 51: 11–28.

    CAS  Google Scholar 

  • Saint Marie RL, Morest DK, Brandon CJ (1989) The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res 42: 97–112.

    PubMed  CAS  Google Scholar 

  • Saint Marie RL, Ostapoff E-M, Morest DK (1986) Co-localization of 3H-GABA and GABA-like immunoreactivity in superior olivary neurons retrogradely labeled from guinea pig cochlear nucleus. Soc Neurosci Abstr 12: 1269.

    Google Scholar 

  • Schwartz AM, Gulley RL (1978) Non-primary afferents to the principal cells of the rostral anteroventral cochlear nucleus of the guinea pig. Am J Anat 153: 489–508.

    PubMed  CAS  Google Scholar 

  • Schwartz AM, Kane EC (1977) Development of the octopus cell area in the cat ventral cochlear nucleus. Am J Anat 148: 1–14.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1981) The differential distribution of label following uptake of 3H- labeled amino acids in the dorsal cochlear nucleus of the cat. Exper Neurol 73: 601–617.

    CAS  Google Scholar 

  • Schweizer H (1981) The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum). J Comp Neurol 201: 25–49.

    PubMed  CAS  Google Scholar 

  • Schweitzer LF, Cant NB (1985a) Differentiation of the giant and fusiform cells in the dorsal cochlear nucleus of the hamster. Developmental Brain Res 20: 69–82.

    Google Scholar 

  • Schweitzer LF, Cant NB (1985b) Development of oriented dendritic fields in the dorsal cochlear nucleus of the hamster. Neuroscience 16: 969–978.

    PubMed  CAS  Google Scholar 

  • Sento S, Ryugo DK (1989) Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties. J Comp Neurol 280: 5520–562.

    Google Scholar 

  • Shiraishi T, Senba E, Tohyama M, Wu J-Y, Kubo T, Matsunaga T (1985) Distribution and fine structure of neuronal elements containing glutamate decarboxylase in the rat cochlear nucleus. Brain Res 347: 183–187.

    PubMed  CAS  Google Scholar 

  • Smith PH, Rhode WS (1985) Electron microscopic features of physiologically characterized, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus. J Comp Neurol 237: 127–143.

    PubMed  CAS  Google Scholar 

  • Smith PH, Rhode WS (1987) Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266: 360–375.

    PubMed  CAS  Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282: 595–616.

    PubMed  CAS  Google Scholar 

  • Snyder RL, Leake PA (1988) Intrinsic connections within and between cochlear nucleus subdivisions in cat. J Comp Neurol 278: 209–225.

    PubMed  CAS  Google Scholar 

  • Sotelo C, Gentschev T, Zamora AJ (1976) Gap junctions in ventral cochlear nucleus of the rat. A possible new example of electronic junctions in the mammalian central nervous system. Neuroscience 1: 5–7.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Cant NB, Henkel CK, Farley GR, Warr WB (1987) Descending projections from the superior olivary complex to the cochlear nucleus of the cat. J Comp Neurol 259: 452–465.

    PubMed  CAS  Google Scholar 

  • Spoendlin HH (1971) Degeneration behavior of the cochlear nerve. Arch Ohr Nas Kehlk Heilk 200: 275–291.

    CAS  Google Scholar 

  • Strominger NL, Strominger Al (1971) Ascending brain stem projections of the anteroventral cochlear nucleus in the rhesus monkey. J Comp Neurol 143: 217–242.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK (1982a) The neuronal architecture of the antero ventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods. Neuroscience 7: 3013–3030.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Moret DK (1982b) The neuronal architecture of the antero ventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neuroscience 7: 3053–3068.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types. Neuroscience 7: 3031–3052.

    PubMed  CAS  Google Scholar 

  • Treeck HH, Pirsig W (1979) Differentiation of nerve endings in the cochlear nucleus on morphological and experimental basis. Acta Otolaryngol 87: 47–60.

    PubMed  CAS  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. I. Number, size, and density of its neurons. J Comp Neurol 209: 409–424.

    PubMed  CAS  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209: 425–434.

    PubMed  CAS  Google Scholar 

  • van Noort J (1969) The Structure and Connections of the Inferior Colliculus. An Investigation of the Lower Auditory System. Van Gorcum, Assen.

    Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exper Neurol 23: 140–155.

    CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: Neu- roanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to Sensory Physiology, Vol 7. New York: Academic Press, pp. 1–38.

    Google Scholar 

  • Webster DB (1971) Projection of the cochlea to cochlear nuclei in Meriam’s kangaroo rats. J Comp Neurol 143: 323–340.

    PubMed  CAS  Google Scholar 

  • Webster DB, Trune DR (1982) Cochlear nuclear complex of mice. Am J Anat 163: 103–130.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ (1987) Evidence for a glycinergic pathway connecting the two cochlear nuclei: an immunocytochemical and retrograde transport study. Brain Res 415: 183–187.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 380: 7–18.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 3: 897–912.

    Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276: 423–435.

    PubMed  CAS  Google Scholar 

  • Wickesberg RE, Oertel D (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J Comp Neurol 268: 389–399.

    PubMed  CAS  Google Scholar 

  • Wickesberg RE, Oertel D (1990) Delayed, frequency-specific inhibition in the cochlear nucleus of mice: A mechanism for monaural echo suppression. J Neurosci 10: 1762–1768.

    PubMed  CAS  Google Scholar 

  • Willard FH, Ryugo DK (1983) Anatomy of the central auditory system. In: Willott JF (ed) The Auditory Psychobiology of the Mouse. Springfield, IL: Charles C Thomas, pp. 201–304.

    Google Scholar 

  • Wouterlood FG, Mugnaini E (1984) Cartwheel neurons of the dorsal cochlear nucleus: A Golgi-electron microscope study in rat. J Comp Neurol 227: 136–157.

    PubMed  CAS  Google Scholar 

  • Wouterlood FG, Mugnaini E, Osen KK, Dahl A-L (1984) Stellate neurons in rat dorsal cochlear nucleus with combined Golgi impregnation and electron microscopy: synaptic junctions and mutual coupling by gap junctions. J Neurocytol 131: 639–664.

    Google Scholar 

  • Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4: 1577–1588.

    PubMed  CAS  Google Scholar 

  • Wu SH, Oertel D (1986) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J Neurosci 6: 2691–2706.

    PubMed  CAS  Google Scholar 

  • Young ED, Shofner WP, White J A, Robert J-M, Voigt HF (1988) Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 277–312.

    Google Scholar 

  • Zook JM, Casseday JH (1982a) Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 207: 1–13.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1982b) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 207: 14–28.

    PubMed  CAS  Google Scholar 

  • Zook JM, Leake PA (1989) Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnelli. J Comp Neurol 290: 243–261

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cant, N.B. (1992). The Cochlear Nucleus: Neuronal Types and Their Synaptic Organization. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4416-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4416-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97800-0

  • Online ISBN: 978-1-4612-4416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics