Antiparasitic Agents

  • Kazuhiko Otoguro
  • Haruo Tanaka
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

The large variety of parasitic diseases caused by invasion of the human body and domestic animals by protozoa and helminths undoubtedly constitute a major medical and public health problem, especially in the tropical and subtropical areas of the world. Millions of peoples living in these areas are affected by parasitic diseases that rarely occur in nontropical areas. Malaria (population currently infected, 150 million), schistosomiasis (more than 200 million), filariasis (130 million), leishmaniasis (1.2 million), and African and American trypanosomiasis (more than 24 million) are the main parasitic diseases in these areas (Edward et al., 1986).

Keywords

Fermentation Malaria Metronidazole Penicillium Allopurinol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacikova, D., Nemec, P., Drobnica, L., Antos, K., Kristian, P. and Hulka, A. 1965a. Antiworm activity of some natural and synthetic compounds. I. Effect of aliphatic and mononuclear aromatic isothiocyanates on Turbatrix aceti. Journal of Antibiotics (Tokyo) Series A 18:162–170.Google Scholar
  2. Bacikova, D., Betina, V. and Nemec, P. 1965b. Anthelminthic activity of antibiotics. Nature (London) 206:1371–1372.CrossRefGoogle Scholar
  3. Balan, J., Balanova, J., Nemec, P., Barathova, H. and Ulicna, V. 1969. Incidence of antiprotozoal and antivermal antibiotics in fungi. III. Genus Penicillium. Journal of Antibiotics (Tokyo) 22:355–357.Google Scholar
  4. Balan, J., Ebringer, L., Nemec, P., Kovac, S. and Dobias, J. 1963. Antiprotozoal antibiotics. II. Isolation and characterization of trypacidin, a new antibiotic, active against Trypanosoma cruzi and Toxoplasma gondii. Journal of Antibiotics (Tokyo) Series A 16:157–160.Google Scholar
  5. Bishop, D. 1958. A technique for screening antibiotics against eelworm. Nematologica 3:143–148.CrossRefGoogle Scholar
  6. Bossche, V. H., Thienpont, D. and Janssens, G. P. (editors). 1986. Chemotherapy of Gastrointestinal Helminths. Handbook of Experiment Pharmacology, p.77. Springer-Verlag, New York.Google Scholar
  7. Bruce-Chwatt, L. J. 1978. Mass travel and imported diseases. Annales de la Societe Belges de Medecine Tropicale 58:77–88.Google Scholar
  8. Bruna, C. D., Ricciardi, M. L. and Sanfilippo, A. 1973. Axenomycins, new cestocidal antibiotics. Antimicrobial Agents and Chemotherapy 3:708–710.PubMedGoogle Scholar
  9. Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Kong, Y-L., Monaghan., R. L. Olson, G, Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Ōiwa, R. and Ōmura, S. 1979. Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrobial Agents and Chemotherapy 15:361–367.PubMedGoogle Scholar
  10. Campbell, W. C. and Rew, R. S. (editors). 1986. Chemotherapy of Parasitic Diseases. Plenum Press, New York.Google Scholar
  11. Cassinelli, G., Cotta, E.D, Amico, G., Bruna, C. D., Grein, A., Mazzoleni, R., Ricciardi, M. L. and Tintinelli, R. 1970. Thaimycins, new anthelmintic and antiprotozoal antibiotics produced by Streptomyces michiganensis var. amylolyticus var. nova. Archives of Mikrobiology 70:197–210.CrossRefGoogle Scholar
  12. Diamond, L. S. 1957. The establishment of various trichomonads of animal and man in axenic cultures. Journal of Parasitology 43:488–490.PubMedGoogle Scholar
  13. Edward, M. K., Marietta, V. and David, J. T. 1986. Medical Parasitology, 6th Ed., pp. 1–19. W. B. Saunders, Philadelphia.Google Scholar
  14. Fisher, M. H. and Mrozik, H. 1984. The avermectin family of macrolide-like antibiotics. In: Ōmura, S. (editor), Macrolide Antibiotics, pp. 553–606. Academic Press, San Diego.Google Scholar
  15. Fuska, J., Nemec, P. and Kuhr, I. 1972. Vermiculine, a new antiprotozoal antibiotic from Penicillium vermiculatum. Journal of Antibiotics (Tokyo) 25:208–211.Google Scholar
  16. Goetz, M. A., McCormick, P. A., Monaghan, R. L., Ostlind, D. A., Hensens, O. D., Liesch, J. M. and Albers-Schonberg, G. 1985. L-155,175: a new antiparasitic macrolide. Fermentation, isolation and structure. Journal of Antibiotics (Tokyo) 38:161–168.Google Scholar
  17. Greenstein, M., Johnson, L., Lechevalier, M., Lechevalier, H. and Maiese, W. M. 1987. LL-F28249 antibiotic complex: A new family of antiparasitic macrocyclic lactones. I. Taxonomy and bioactivity. In: Program and Abstracts of the 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, No. 996, pp. 270, Oct. 4–7,1987, New York.Google Scholar
  18. Hamill, R. L. and Hoehn, M. M. 1964. Anthelmycin, a new antibiotic with anthelmintic properties. Journal of Antibiotics (Tokyo) Series A 17:100–103.Google Scholar
  19. Haneishi, T., Arai, M., Kitano, N. and Yamamoto, S. 1974. Aspiculamycin, a new cytosine nucleoside antibiotic. III. Biological activities, in vitro and in vivo. Journal of Antibiotics (Tokyo) 27:339–342.Google Scholar
  20. Hirabayashi, A. 1959. Studies on the antiamoebic effect of protomycin, a new antibiotic isolated from the culture filtrate of a species of Streptomycetes. Journal of Antibiotics (Tokyo) Series A 12:298–309.Google Scholar
  21. Hood, J. D., Banks, R. M., Brewer, M. D., Fish, J. P., Manger, B. R. and Poulton, M. E. 1989. A novel series of milbemycin antibiotics from Streptomyces strain E225. I. Discovery, fermentation and anthelmintic activity. Journal of Antibiotics (Tokyo) 42:1593–1598.Google Scholar
  22. Ikushima, H., Okamoto, M., Tanaka, H, Ohe, O., Kohsaka, N., Aoki, H. and Imanaka, H. 1980. New anticoccidial antibiotics, WS-5995A and B. I. Isolation and characterization. Journal of Antibiotics (Tokyo) 33:1107–1113.Google Scholar
  23. Imamura, N., Kuga, H., Otoguro, K, Tanaka, H. and Ōmura, S. 1989. Structures of jietacins. Unique a, β-unsaturated azoxy antibiotics. Journal of Antibiotics (Tokyo) 42:156–158.Google Scholar
  24. Jomon, K, Kuroda, Y., Ajisaka, M. and Sakai, H. 1972. A new antibiotic, ikarugamycin. Journal of Antibiotics (Tokyo) 25:271–280.Google Scholar
  25. Kettner, M., Nemec, P., Kovac, S. and Balanova, J. 1973. Dactylarin, a new antiprotozoal antibiotic from Dactylaria lutea. Journal of Antibiotics (Tokyo) 26:692–696.Google Scholar
  26. Kimura, Y., Mori, M., Hyeon, S., Suzuki, A. and Mitsui, M. 1981. A rapid and simple method for assay of nematocidal activity and its application to measuring the activities of dicarboxylic esters. Agricultural and Biological Chemistry 45:249–251.CrossRefGoogle Scholar
  27. Mori, R. 1961. Studies on nematocidal antibiotics. I. Screening and isolation of nematocidal substances produced by actinomycetes. Journal of Antibiotics (Tokyo) Series A 18:162–170.Google Scholar
  28. Nemec, P., Balan, J. and Ebringer, L. 1963. Antiprotozoal antibiotics. I. Method of specific screening. Journal of Antibiotics (Tokyo) Series A 16:155–156.Google Scholar
  29. Nemec, P., Krizkova, L., Balan, J., Balanova, J. and Kutkova, M. 1969a. Incidence of antiprotozoal and antivermal antibiotics in fungi. I. Class fungi imperfecti. Journal of Antibiotics (Tokyo) 22:345–350.Google Scholar
  30. Nemec, P., Krizkova, L., Balan, J., Balanova, J. and Kutkova, M. 1969b. Incidence of antiprotozoal and antivermal antibiotics in fungi. II. Class Oomycetes. Journal of Antibiotics (Tokyo) 22:351–354.Google Scholar
  31. Okami, Y., Utahara, R., Oyagi, H., Nakamura, S. and Umezawa, H. 1955. The screening of anti-toxoplasmic substance produced by Streptomycete and anti-toxoplasmic substance No. 534. Journal of Antibiotics (Tokyo) Series A 8:126–131.Google Scholar
  32. Ōmura, S., Otoguro, K., Imamura, N., Kuga, H., Takahalshi, Y., Masuma, R., Tanaka, Y., Tanaka, H., Su, X-H. and You, E-T. 1987. Jietacins A and B, new nematocidal antibiotics from a Streptomyces sp. Taxonomy, isolation, and physico-chemical and biological properties. Journal of Antibiotics (Tokyo) 40:623–629.Google Scholar
  33. Ondeyka, J. G., Goegelman, R. T., Schaeffer, J. M., Kelemen, L. and Zitano, L. 1990. Novel antinematodal and antiparasitic agents from Penicillium charlesii. I. Fermentation, isolation and biological activity. Journal of Antibiotics (Tokyo) 43:1375–1379.Google Scholar
  34. Otoguro, K., Ōiwa, R., Iwai, Y., Tanaka, H. and Ōmura, S. 1988a. Screening for new antitrichomonal substances of microbial origin and antitrichomonal activity of trichostatin A. Journal of Antibiotics (Tokyo) 41:461–468.Google Scholar
  35. Otoguro, K, Liu, Z-H., Fukuda, K, Li, Y., Iwai, Y., Tanaka, H. and Ōmura, S. 1988b. Screening for new nematocidal substances of microbial origin by a new method using the pine wood nematode. Journal of Antibiotics (Tokyo) 41:573–575.Google Scholar
  36. Pong, S. S., Wang, C. C. and Fritz, L. C. 1980. Studies on the mechanism of action of avermectin B: stimulation of release of γ-aminobutyric acid from brain synaptosomes. Journal of Neurochemistry 34:351–358.PubMedCrossRefGoogle Scholar
  37. Probst, G. W., Hoehn, M. M. and Woods, B. L. 1966. Anthelvencins, new antibiotics with anthelmintic properties. Antimicrobial Agents and Chemotherapy 1965:789–795.Google Scholar
  38. Saburi, Y. 1954. A new method of antibiotic screening against protozoa (Trichomonas vaginalis). Journal of Antibiotics (Tokyo) Series A 7:127–131.Google Scholar
  39. Santmyer, P. H. 1956. Studies on the metabolism of Panagrellus redivivus. Proceedings of the Helminthological Society of Washington 23:30–36.Google Scholar
  40. Schaeffer, J. M., Frazier, E. G., Bergstrom, A. R., Williamson, J. M, Liesch, J. M. and Goetz, M. A. 1990. Cochlioquinone A, a nematocidal agent which competes for specific [3H]ivermectin binding sites. Journal of Antibiotics (Tokyo) 43:1179–1182.Google Scholar
  41. Sharma, S. 1987. Treatment of helminth diseases challenges and achievements. Progress in Drug Research 31:9–100.PubMedGoogle Scholar
  42. Stapley, E. O. and Woodruff, H. B. 1982. Avermectins, antiparasitic lactones produced by Streptomyces avermitilis isolated from a soil in Japan. In: Umezawa, H., Demain, A. L., Hata, T. and Hutchinson, C. R. (editors), Trends in Antibiotic Research, pp. 154–170, Japan Antibiotic Research Association, Tokyo.Google Scholar
  43. Tarjan, A. C. 1956. Evaluation of various nematodes for use in contact nematocide tests. Proceedings of the Helminthological Society of Washington 22:33–37.Google Scholar
  44. Taylor, A. L., Fejdmesser, J. and Feber, W. A. 1957. A new technique for preliminary screening of nematocides. Plant Disease Reporter 41:527.Google Scholar
  45. Tejmar-Kolar, L. and Zahner, H. 1984. Search for effective substances against parasitic protozoa: An attempt to develop a new screening model. FEMS Microbiology Letter 24:21–24.CrossRefGoogle Scholar
  46. Thiemann, J. E. and Beretta, G. 1967. Antiprotozoal antibiotics. Ochromonas malhamensis as test organism for the broth screening of anti-trichomonas agents. Journal of Antibiotics (Tokyo) 20:191–193.Google Scholar
  47. Wang, C. C. 1984. Parasite enzymes as potential targets for antiparasitic chemotherapy. Journal of Medicinal Chemistry 27:1–7.PubMedCrossRefGoogle Scholar
  48. Zähner, F., Isenberg, H. D., Rosenfeld, M. H. and Schatz, A. 1953. The distribution of soil actinomycetes antagonistic to protozoa. Journal of Parasitology 39:33–37.CrossRefGoogle Scholar

Copyright information

© Spring-Verlag New York, Inc. 1992

Authors and Affiliations

  • Kazuhiko Otoguro
  • Haruo Tanaka

There are no affiliations available

Personalised recommendations