Fractals for the Classroom pp 67-115 | Cite as

# Pascal’s Triangle: Cellular Automata and Attractors

## Abstract

Being introduced to the Pascal triangle for the first time, one might think that this mathematical object is a rather innocent one. Surprisingly it has attracted the attention of innumerable scientists and amateur scientists over many centuries. One of the earliest mentions (long before Pascal’s name became associated with it) is in a Chinese document from around 1303.^{1} Boris A. Bondarenko,^{2} in his beautiful recently published book, counts several hundred publications which have been devoted to the Pascal triangle and related problems just over the last two hundred years. Prominent mathematicians as well as popular science writers such as Ian Stewart,^{3} Evgeni B. Dynkin and Wladimir A. Uspenski,^{4} and Stephen Wolfram^{5} have devoted articles to the marvelous relationship between elementary number theory and the geometrical patterns found in the Pascal triangle. In chapter 2 of *Fractals for the Classroom, Part One* we introduced one example: the relation between the Pascal triangle and the Sierpinski gasket.

### Keywords

Pyramid Boris Wolfram## Preview

Unable to display preview. Download preview PDF.

### References

- 2.B. Bondarenko,
*Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications*, Tashkent, Fan, 1990, in Russian.MATHGoogle Scholar - 3.I. Stewart,
*Game, Set, and Math*, Basil Blackwell, Oxford, 1989.MATHGoogle Scholar - 4.E. B. Dynkin and W. Uspenski:
*Mathematische Unterhaltungen II*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1968.Google Scholar - 5.S. Wolfram,
*Geometry of binomial coefficients*, Amer. Math. Month. 91 (1984) 566–571.MathSciNetMATHCrossRefGoogle Scholar - 12.S. Wolfram (ed.),
*Theory and Application of Cellular Automata*, WORLD Scientific, Singapore, 1986.Google Scholar - 15.T. Toffoli, N. Margolus,
*Cellular Automata Machines: A New Environment For Modelling*, Press, Cambridge, Mass., 1987.Google Scholar - 19.F. v. Haeseler, H.-O. Peitgen, G. Skordev,
*Pascal’s triangle, dynamical systems and attractors*, to appear in Ergodic Theory and Dynamical Systems.Google Scholar - 20.F. v. Haeseler, H.-O. Peitgen, G. Skordev,
*On the hierarchical and global structure of cellular automata and attractors of dynamical systems*, to appear.Google Scholar - 21.E. E. Kummer,
*Über Ergänzungssätze zu den allgemeinen Reziprozitätsgesetzen*, Journal für die reine und angewandte Mathematik 44 (1852) 93–146. For the result relevant ro our discussion see pages 115–116.Google Scholar - 25.In this regard we also refer to S. J. Willson,
*Cellular automata can generate fractals*, Discrete Applied Math. 8 (1984) 91–99. who studied limit sets of linear cellular automata via rescaling techniques.Google Scholar - 26.Sketching some recent work from F. v. Haeseler. H.-O. Peitgen, G. Skordev,
*Pascal’s triangle, dynamical systems and attractors*, to appear in Ergodic Theory and Dynamical Systems.Google Scholar - 28.For a discussion of higher dimensions see F. v. Haeseler, H.-O. Peitgen, G, Skordev,
*On the hierarchical and global structure of cellular automata and attractors of dynamical systems*, to appear.Google Scholar - 29.A. W.M. Dress, M. Gerhardt, N.I. Jaeger, P.J. Plath, H. Schuster,
*Some proposals concerning the mathematical modeling of oscillating heterogeneous catalytic reactions on metal surfaces*. In L. Rensing and N. I. Jaeger (eds.), Temporal Orderm, Springer-Verlag, Berlin, 1984.Google Scholar