Skip to main content

Robust Estimation of a Location Parameter

  • Chapter

Part of the Springer Series in Statistics book series (PSS)

Abstract

This paper contains a new approach toward a theory of robust estimation; it treats in detail the asymptotic theory of estimating a location parameter for contaminated normal distributions, and exhibits estimators—intermediaries between sample mean and sample median—that are asymptotically most robust (in a sense to be specified) among all translation invariant estimators. For the general background, see Tukey (1960) (p. 448 ff.)

Keywords

  • Maximum Likelihood Estimator
  • Location Parameter
  • Robust Estimation
  • Asymptotic Normality
  • Asymptotic Variance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

1This research was performed while the author held an Adolph C. and Mary Sprague Miller Fellowship.

2 Now at Cornell University.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anscombe. F.J. (1960). Rejection of outliers. Technometrics 2 123–147.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Cramér, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.

    MATH  Google Scholar 

  • Hajek. J. (1962). Asymptotically most powerful rank order tests. Ann. Math. Statist. 33 1124–1147.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Hodges, J.L., Jr. and Lehmann. E. (1963). Estimates of location based on rank tests. Ann. Math. Statist. 34 598–611.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Hoeffding, W. (1948). A class of statistic» with asymptotically normal distributions. Ann. Math. Statist. 19 293–325.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. Univ. California Publ. Statist. 1 277–330.

    MathSciNet  Google Scholar 

  • LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Publications de l’Institut de Statistique de l’Université de Paris. 7 17–35.

    Google Scholar 

  • Loève, M. (1960). Probability Theory, (2nd ed.). Van Nostrand, New York.

    MATH  Google Scholar 

  • Stein, C. (1956). Efficient nonparametric testing and estimation. Proc. Third Berkele Symp. Math. Statist, and Prob. (J. Neyman and L. LeCam, eds.) I 187–195.

    Google Scholar 

  • Tukey, J.W. (1960). A survey of sampling from contaminated distributions. In Contributions to Probability and Statistics (ed. I. Olkin et al.). Stanford Univ. Press.

    Google Scholar 

  • Wald. A. (1949) Note on the consistency of the M.L. estimate. Ann. Math. Statist. 20 595–601.

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Huber, P.J. (1992). Robust Estimation of a Location Parameter. In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4380-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4380-9_35

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94039-7

  • Online ISBN: 978-1-4612-4380-9

  • eBook Packages: Springer Book Archive