Introduction to Mosteller (1946) On Some Useful “Inefficient” Statistics

  • H. A. David
Part of the Springer Series in Statistics book series (SSS)


The editors have not done the obvious in selecting this paper. Evidently, they were not put off by its opening words: “Several statistical techniques are proposed for economically analyzing large masses of data by means of punched-card equipment.” Moreover, very little of the paper survives unimproved in current statistical practice. Nevertheless, the author made a number of significant advances, pointed the way to many more, and showed great prescience. The paper, as a result, has been extremely influential and has stimulated much research on order statistics.


Order Statistic Decimal Place Multivariate Normal Distribution Optimal Spacing Sample Quantile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahadur, R.R. (1966). A note on quantiles in large samples, Ann. Math. Statist., 37, 577–580.MathSciNetMATHCrossRefGoogle Scholar
  2. Cadwell, J.H. (1953). The distribution of quasi-ranges in samples from a normal population. Ann. Math. Statist., 24, 603–613.MathSciNetMATHCrossRefGoogle Scholar
  3. David. H.A. (1981). Order Statistics, 2nd ed. Wiley. New York.MATHGoogle Scholar
  4. Eisenberger. I., and Posner, E.C. (1965). Systematic statistics used for data compression in space telemetry. J. Amer. Statist. Assoc., 60, 97–133.CrossRefGoogle Scholar
  5. Fienberg, S.F.., Hoaglin. D.C., Kruskal, W.H.. and Tanur, J.M (eds.) (1990). A Statistical Model: Frederick Mosteller’s Contributions to Statistics. Science, and Public Policy. Springer-Verlag. New York.MATHGoogle Scholar
  6. Ghosh, J.K. (1971). A new proof of the Bahadur representation of quantilcs and an application. Ann. Math. Statist., 42. 1957–1961.MathSciNetMATHCrossRefGoogle Scholar
  7. Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math., 44. 423–453.MathSciNetMATHCrossRefGoogle Scholar
  8. Godwin. H.J. (1949). On the estimation of dispersion by linear systematic statistics. Biometrika, 36. 92–100.MathSciNetMATHGoogle Scholar
  9. Harter. H.L. (1959). The use of sample quasi-ranges in estimating population standard deviation, Ann. Math. Statist., 30$1980–999. (correction, 31. 228 ).CrossRefGoogle Scholar
  10. Harter. H.L. (1978). A Chronological Annotated Bibliography on Order Statistics. Vol. I: Pre-1950. U.S. Government Printing Office. Washington. D.C.Google Scholar
  11. Hartley. H.O., and Pfaffenberger, R.C. (1972). Quadratic forms in order statistics used as goodness-of-fit criteria. Biometrika. 59. 605–612.MathSciNetMATHCrossRefGoogle Scholar
  12. Hastings, C.. Jr.. Mosteller, F., Tukey, J.W., and Winsor. C.P. (1947). Low moments for small samples: A comparative study of order statistics, Ann. Math. Statist., 18. 413–426.MathSciNetMATHCrossRefGoogle Scholar
  13. Kendall. M.G. (1943). The Advanced Theory of Statistics. Vol. 1. Griffin, London.Google Scholar
  14. Lloyd, E.H. (1952). Least-squares estimation of location and scale parameters using order statistics, Biometrika, 39, 88–95.MathSciNetMATHGoogle Scholar
  15. O’Connell, M.J., and David. H.A. (1976). Order statistics and their concomitants in some double sampling situations, in Essay in Probability and Statistics, ( S. Ikedo, et al., eds). pp. 451–466. Shinko Tsusho. Tokyo.Google Scholar
  16. Ogawa, J. (1951). Contributions to the theory of systematic statistics, I, Osaka Math. J.. 3. 175–213.MathSciNetGoogle Scholar
  17. Pearson, K. (1920). On the probable errors of frequency constants. Part 111, Biometrika. 13. 113–131Google Scholar
  18. Reiss, R.-D. (1980). Estimation of quantiles in certain nonparametric models., Ann. Statists 8. 87–105.MathSciNetMATHCrossRefGoogle Scholar
  19. Sarhan. A.E.. and Greenberg, B.G. (eds.) (1962). Contributions to Order Statistics. Wiley, New York.MATHGoogle Scholar
  20. Smirnoff., N. (1937). Sur la dépendance des membres d’une série de variations, Bull. Univ. État Moscou, Série Int., Sec. A, Vol. 1, Fasc. 4. 1–12.Google Scholar
  21. Smirnov. N.V. (1944). Approximation of distribution laws of random variables by empirical data, Uspekhi Mat. Nauk. 10, 179–206. (in Russian).MATHGoogle Scholar
  22. Statistical Science (1988). Frederick Mosteller and John Tukey: A Conversation. 3(1), 136–144.Google Scholar
  23. Tietjen, G.L. Kahaner. D.K., and Beckman, R.J. (1977). Variances and covariances of the normal order statistics for sample sizes 2 to 50. Selected Tables in Math. Statist., 5. 1–73.Google Scholar
  24. Walker, A.M. (1968). A note on the asymptotic distribution of sample quantiles. J. Rov. Statist. Soc., 30, 570–575.MATHGoogle Scholar
  25. Wilks, S.S. (1943). Mathematical Statistics. Princeton Univ. Press, Princeton, N.J.MATHGoogle Scholar
  26. Wilks. S.S. (1948). Order statistics. Bull. Amer. Math. Soc.. 5. 6–50.MathSciNetCrossRefGoogle Scholar
  27. Yule, G.U. (1911). An Introduction to the Theory of Statistics. Griffin. London.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • H. A. David
    • 1
  1. 1.Iowa State UniversityUSA

Personalised recommendations