Weak and Strong Turbulence in the Complex Ginzburg Landau Equation

  • J. D. Gibbon
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 55)


We present analytical methods whereby weak and strong turbulence are predicted in the D dimensional complex Ginzburg Landau (CGL) equation \(A_{t}=RA+(1+i\nu)\Delta A-(1+i\mu)A\vert A\vert^{2q}\) on a periodic domain [0,1]. Strong (hard) turbulence is characterised by large fluctuations away from space & time averages while no such fluctuations occur in weak (soft) turbulence. In the Δ-ν plane, there are different areas where weak & strong behaviour can occur. In the strong case (Δ, ν → ±∞, ‡∞), the corresponding areas go out to the inviscid limit where the CGL equation becomes the NLS equation in which a finite time singularity occurs when qD ≥ 2. A new infinite set of differential inequalities for the “lattice” of functionals \(F_{n,m}=\int\left[{\vert\nabla^{n-1}A\vert}^{2m}+\alpha_{n,m}\vert A\vert^{2m\left[q(n-1)+1\right]}\right]d\underline{x}\) enables us to construct large time upper bounds on the F n,m . The occurrence of strong spiky turbulence is predicted for qD = 2 by showing that exponents of R in the upper bounds of F n,m & ‖A in the strong regions are dependent on the quantity |ν| which gets large in the inviscid limit. The critical value qD = 2 plays an important role: when qD > 2 the CGL equation has some similarities with the 3D Navier equations. A comparison is made between the two & the possibility of having a 1D system which mimics some limited features of the Navier Stokes equations is discussed.


Navier Stokes Equation Differential Inequality Interpolation Inequality Inertial Subrange Incompressible Navier Stokes Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Libchaber, A., Proc. Royal Soc. London 413A, 63, 1987 and From chaos to turbulence in Benard convection, published in Dynamical Chaos, Princeton University Press (1887) p. 63.Google Scholar
  2. [2]
    Constantin, P., Foias, C. & Temam, R., Physica 30D, 284 (1988).MathSciNetGoogle Scholar
  3. [3]
    Constantin, P., Foias, C., The Navier Stokes equations, Chicago University Press (1989).Google Scholar
  4. [4]
    Temam, R., Infinite dimensional dynamical systems in mechanics & physics, Springer Applied Math Series 68 (1988).Google Scholar
  5. [5]
    Weiss, N.O., Proc. Royal Soc. London 413A, 71, (1987) and From chaos to turbulence in Benard convection, published in Dynamical Chaos, Princeton University Press (1987), p. 71.Google Scholar
  6. [6]
    Majda, A., Comm. Pure & Appl. Math. 39 (1986), pp. 187–220.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Zakharov, V.E., Sov. Phys. JETP, 35 (1972), 908.Google Scholar
  8. [8]
    Goldman, M., Rev. Mod. Phys. 56 (1984), 709–35.CrossRefGoogle Scholar
  9. [9a]
    Landman, M.J., Papanicolaou, G.C., Sulem, C. & Sulem, P.L., Phys. Rev. A38, 3837–43 (1988)MathSciNetGoogle Scholar
  10. [9b]
    K. Rypdal, I. Rasmussen & K. Thomsen; Physica 16D, (1985), 339.MathSciNetGoogle Scholar
  11. [9c]
    I. Rasmussen & K. Rypdal; Phys. Scr. 33, 481 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [10]
    Bartuccelli, M., Constantin, P., Doering, C., Gibbon, J.D. & Gisselfält, M., Physica D, 44 (1990), 421–444.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [11]
    Doering, C.D., Gibbon, J.D. & Levermore, D., Weak and strong solutions of the CGL equation, preprint (1991).Google Scholar
  14. [12]
    Levermore, C.D., private communication.Google Scholar
  15. [13]
    Lange, C. & Newell, A.C., SIAM J. Appl. Math. 27 (1974), 441–56.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [14]
    Keefe, L., Stud. Appl. Math., 73 (1985), 91.MathSciNetzbMATHGoogle Scholar
  17. [15]
    Sirovich, L. & Rodriguez, J., Phys. Lett. A120 (1988), 211.MathSciNetGoogle Scholar
  18. [16]
    Coullet, P. Gil L. & Lega, J., Phys. Rev Letts, 62 (1989), 1619–22.CrossRefGoogle Scholar
  19. [17]
    Doering, C., Gibbon, J.D., Holm, D.D. & Nicolaenko, B., Nonlinearlity 1 (1988), 279–309 and Phys. Rev. Letts. 59 (1987), 2911–4.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [18]
    Constantin, P., A construction of inertial manifolds, Contemporary Mathematics 99, 27, (1989) (Proceedings AMS Summer School Boulder 1987).MathSciNetGoogle Scholar
  21. [19]
    Ghidaglia, J-M. & Heron, B., 28D (1987), 282.Google Scholar
  22. [20]
    Heslot, F. Castaing, B. & Libchaber, A., Phys. Rev. A36 (1987), 5870–3.Google Scholar
  23. [21]
    Doering, C.D., Gibbon, J.D., Holm, D.D., Hyman, J.M., Levermore, D. & Kovacic, G., in preparation (1990).Google Scholar
  24. [22]
    Bartuccelli, M., Doering, C.D., & Gibbon, J.D., Ladder theorems for the 2D & 3D Navier Stokes equations on a finite periodic domain, to appear in Nonlinearity 1991.Google Scholar
  25. [23]
    Temam, R., The Navier Stokes equations & nonlinear functional analysis, CBMS-NSF Regional Conference Series in Appl. Math., SIAM 1983.Google Scholar
  26. [24]
    Henshaw, W.D., Kreiss, H.O. & Reyna, L.G., On the smallest scale for the incompressible Navier Stokes equations, J. Theor. Appl. Fluid Mech., 1, (1989), 1–32. Henshaw, W.D., Kreiss, H.O. & Reyna, L.G. Smallest scale estimates for the incompressible Navier Stokes equations; preprint 1990.Google Scholar
  27. [25]
    C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier Stokes equations, J. of Funct. Anal. 87 (1989), 359–69.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • J. D. Gibbon
    • 1
  1. 1.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations