Computational Ideal Theory

  • Bhubaneswar Mishra
Part of the Texts and Monographs in Computer Science book series (MCS)


In the previous chapter, we saw that an ideal in a Noetherian ring admits a finite Gröbner basis (Theorem 2.3.9). However, in order to develop constructive methods that compute a Gröbner basis of an ideal, we need to endow the underlying ring with certain additional constructive properties. Two such properties we consider in detail, are detachability and syzygy-solvability. A computable Noetherian ring with such properties will be referred to as a strongly computable ring.


Corn Prefix Mora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Bhubaneswar Mishra
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations