Skip to main content

Simple Repeat Loci as Tools for Genetic Identification

  • Chapter
Ancient DNA
  • 387 Accesses

Abstract

The genomes of eukaryotic organisms harbor two principally different classes of DNA: Single-copy DNA is present once per haploid chromosome set, whereas repetitive DNA can exist in a few to a few hundred thousand (or million) copies. The whole array of repetitive sequences may comprise from less than 10% to more than 90% of the genome in different animal or plant species (in man it is about 30%). Novel names have been given to several subclasses of repetitive DNA elements: SINES and LINES represent supergroups of short and long interspersed nucleotide elements, rather loosely defined on the basis of length (for a general review see, e.g., Epplen 1988; Singer 1982). Some designations for more narrowly defined groups reflect their discoverers’ whim. After the sputniks had been successfully launched and Yuri Gagarin came back from space, the term satellite DNA was coined to designate the sizeable amount (up to 30%) of a eukaryotic genome that can be separated by buoyant density gradient centrifugation. For the present discussion, minisatellites and microsatellites are of special interest: the expression “minisatellites” was established in order to distinguish a particular kind of tandemly reiterated repeat with a basic unit of roughly 33 base pairs from all others (Jeffreys et al. 1985); later, the designation “microsatellites” caught on, somewhat unfortunately, for tandemly organized stretches of dinucleotides which are amplified by the polymerase chain reaction (PCR). Variable number of tandem repeats (VNTRs) is commonly used to name both entities of sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammer H, Schwaiger FW, Kammerbauer C, Gomolka M, Arriens A, Lazary S, Epplen JT (1992) Exonic polymorphism vs intronic simple repeat hypervariability in MHC-DRB genes. Immunogenetics 35:330–337

    Article  Google Scholar 

  • Birkhead TR, Burke T, Zann R, Hunter FM, Krupa AP (1990) Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia guttata, revealed by DNA fingerprinting. Behav Ecol Sociobiol 27:315–324

    Article  Google Scholar 

  • Chakraborty R, Kidd KK (1991) The utility of DNA typing in forensic work. Science 254: 1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Dover G (1991) From philosophy to forensics. Fingerprint News 3(4):6–7

    Google Scholar 

  • Epplen JT (1988) On simple repeated GATA/GACA sequences: a critical reappraisal. Heredity 79:409–417

    CAS  Google Scholar 

  • Epplen JT (1992) The methodology of multilocus DNA fingerprinting using radioactive or nonradioactive oligonuleotide probes specific for simple repeat motifs. In: Chrambach A, Dunn MJ, Radola BJ (eds) Advances in Electrophoresis, Vol. 5. Weinheim: Verlag Chemie, pp. 59–112

    Google Scholar 

  • Epplen C, Epplen JT (1992) The human cDNA sequence homologous to the mouse MHC class I promotor binding protein gene contains four additional codons. Mammalian Genome 3:472–475

    Article  PubMed  CAS  Google Scholar 

  • Epplen JT, Mathé J (1992) Multilocus DNA fingerprinting using nonradioactively labeled oligonucleotide probes specific for simple repeat elements. In: Kessler C (ed): Non-radioactive labelling, Heidelberg: Springer-Verlag, 271–277

    Google Scholar 

  • Epplen JT, Ammer H, Epplen C, Kammerbauer C, Mitreiter R, Roewer L, Schwaiger W, Steimle V, Zischler H, Albert E, Andreas A, Beyermann B, Meyer W, Buitkamp J, Nanda I, Schmid M, Nürnberg P, Pena SDJ, Pöche H, Sprecher W, Schartl M, Weising K, Yassouridis A (1991) Oligonucleotide fingerprinting using simple repetitive repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA-Fingerprinting: Approaches and Applications. Basel: Birkhäuser-Verlag, pp. 50–69

    Google Scholar 

  • Epplen JT, Bock S, Nürnberg P (1993) Tumor genome screening by multilocus DNA fingerprints as obtained by simple repetitive oligonucleotide probes. In: Wagener C, Neumann R (eds) Molecular Diagnostics of Cancer 41–51

    Google Scholar 

  • Gladstone DE (1979) Promiscuity in monogamous colonial birds. The American Naturalist 114:545–557

    Article  Google Scholar 

  • Hamada K, Gleason SL, Levi B-Z, Hirschfeld S, Appella E, Ozato K (1989) H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element. Proc Nat Acad Sci USA 86:8289–8293

    Article  PubMed  CAS  Google Scholar 

  • Hundrieser J, Nürnberg P, Czeizel A, Metneki J, Rothgänger S, Foelske C, Zischler H, Epplen JT (1992) Characterization of hypervariable, locus specific probes derived from a (CAC)5/(GTG)5 fingerprint in various Eurasian populations. Hum Genet 90:27–33

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucl Acids Res 16:10953–10971

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Turner M, Debenham P (1991) The efficiency of multilocus DNA fingerprinting probes for individualization and establishment of family relationships determined from extensive casework. Am J Hum Genet 48:824–840

    PubMed  CAS  Google Scholar 

  • Krawczak M. Böhm I, Nürnberg P, Hundrieser A, Pöche H, Peters C, Slomski R, Pöpperl A, Epplen JT, Schmidtke J (in press) Paternity testing with oligonucleotide probe (CAC)5/(GTG)5: a multi-center study. Forens Sci Int

    Google Scholar 

  • Kunstmann E, Bocker T, Sauer H, Mempel W, Epplen JT (1992) Diagnosis of transfusion-associated graft-versus-host disease by genetic fingerprinting and polymerase chain reaction. Transfusion 32:776–770

    Google Scholar 

  • Lewontin RC, Hartl DL (1991) Population genetics in forensic DNA typing. Science 254:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Lubjuhn T, Curio E, Epplen C, Epplen JT (1992) Non-radioactive oligonucleotide fingerprints using AMPPD reveal a case of unusual reproductive strategy in Timor zebra finches (Taeniopygia guttata guttata). Fingerprint News 4(2): 13–14

    Google Scholar 

  • Mäueler W, Muller M, Köhne AC, Epplen JT (1992) A gel retardation assay system for studying protein binding to simple repetitive DNA sequences. Electrophoresis 13:7–10

    Article  PubMed  Google Scholar 

  • Meyer W, Lieckfeldt E, Kayser T, Nürnberg P, Epplen JT, Börner T (1992) Fingerprinting fungal genomes with phage M13 DNA and oligonucleotide probes specific for simple repetitive DNA sequences. Adv Mol Genet 241–253

    Google Scholar 

  • Nanda I, Epplen JT, Schmid M (1991) In situ hybridization of nonradioactive oligonucleotide probes to chromosomes. In: Adolph KW (ed) Advanced Techniques in Chromosome Research. New York: Marcel Dekker, pp. 117–134

    Google Scholar 

  • Nürnberg P, Epplen JT (1992) On the reusability of dried agarose gels for the subsequent analysis of multiple samples from various kingdoms. Fingerprint News 4(1):9

    Google Scholar 

  • Nürnberg P, Roewer L, Neitzel H, Sperling K, Pöpperl A, Hundrieser J, Pöche H, Epplen C, Zischler H, Epplen JT (1989) DNA fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: somatic stability and germline mutations. Hum Genet 84:75–78

    Article  PubMed  Google Scholar 

  • Rieß O, Kammerbauer C, Roewer L, Steimle V, Andreas A, Albert E, Nagai T, Epplen JT (1990) Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes. Immunogenetics 32:110–116

    Article  PubMed  Google Scholar 

  • Roewer L, Epplen JT (1992) Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple (gata)n repeats. Forensic Sci Int 53:163–171

    Article  PubMed  CAS  Google Scholar 

  • Roewer L, Nürnberg P, Fuhrmann E, Rose M, Prokop O, Epplen JT (1990) Stain analysis using oligonucleotide probes specific for simple repetitive DNA sequences. Forensic Sci Int 47:59–70

    Article  PubMed  CAS  Google Scholar 

  • Roewer L, Rieß O, Prokop O (1991) Hybridization and polymerase chain reaction amplification of simple repeated DNA sequences for the analysis of forensic stains. Electrophoresis 12:181–186

    Article  PubMed  CAS  Google Scholar 

  • Roewer L, Arnemann J, Spurr NK, Grzeschik KH, Epplen JT (1992) Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 88, 89:389–394

    Google Scholar 

  • dos Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of a y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet 90:655–656

    Article  PubMed  CAS  Google Scholar 

  • Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9:369–374

    Article  PubMed  Google Scholar 

  • Schartl M, Erbelding-Denk C, Nanda I, Schmid M, Schröder JH, Epplen JT (1991) Mating success of subordinate males in a poeciliid fish species, Limia perugiae. Fingerprint News 3(2):16–18

    Google Scholar 

  • Schwaiger FW, Gomolka M, Geldermann H, Zischler H, Buitkamp J, Epplen JT, Ammer H (1992) Oligonucleotide fingerprinting to individualize ungulates. Theor Appl Electrophoresis 2:193–200

    CAS  Google Scholar 

  • Singer MF (1982) SINES and LINES: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28:433–434

    Article  PubMed  CAS  Google Scholar 

  • Skinner D (1977) Satellite DNAs. Bioscience 27:790–796

    Article  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucl Acids Res 12:4127–4137

    Article  PubMed  CAS  Google Scholar 

  • Weber JL (1990) Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. In Davis KE, Tilghman SM (eds), Genome Analysis 1: Genetic and Physical Mapping. Cold Spring Harbor, N.Y.: CSH Laboratory Press, pp. 159–181

    Google Scholar 

  • Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–288

    Article  PubMed  CAS  Google Scholar 

  • Yee HA, Wong AKC, van de Sande JH, Rattner JB (1991) Identification of novel single-stranded d(tc)n binding proteins in several mammalian species. Nucl Acids R 19:949–953

    Article  CAS  Google Scholar 

  • Zischler H, Nanda I, Schäfer R, Schmid M, Epplen JT (1989) Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ. Hum Genet 82:227–233

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Hinkkanen A, Studer R (1991) Oligonucleotide fingerprinting with (CAC)5: Nonradioactive in-gel hybridization and isolation of individual hypervariable loci. Electrophoresis 12:141–146

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Kammerbauer C, Studer R, Grzeschik K-H, Epplen JT (1992) Dissecting (CAC)5/(GTG)5 fingerprints from man into individual locus specific, hypervariable components. Genomics 13:983–990

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Epplen, J.T. (1994). Simple Repeat Loci as Tools for Genetic Identification. In: Herrmann, B., Hummel, S. (eds) Ancient DNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4318-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4318-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94308-4

  • Online ISBN: 978-1-4612-4318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics