Knowledge Spaces and Skill Assignments

  • Jean-Paul Doignon
Part of the Recent Research in Psychology book series (PSYCHOLOGY)

Abstract

The concept of a knowledge space is at the heart of a descriptive model of knowledge in a given body of information. Another model explains the observed knowledge of individuals by latent skills. We here reconcile these two underlying approaches by showing that each finite knowledge space can be generated from a skill assignment that is minimal and unique up to an isomorphism. Some more technicalities are required in the infinite case. Part of the results reformulate theorems from the theory of Galois lattices of relations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbut, M., & Monjardet, B. (1970). Ordre et classification: Algèbre et combinatoire. Paris: Hachette.Google Scholar
  2. Birkhoff, G. (1967). Lattice theory. Providence: American Mathematical Society.Google Scholar
  3. Doignon, J.-P., & Falmagne, J.-Cl. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175–196.CrossRefGoogle Scholar
  4. Falmagne, J.-Cl., & Doignon, J.-P. (1988a). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 1–23.CrossRefGoogle Scholar
  5. Falmagne, J.-Cl., & Doignon, J.-P. (1988b). A Markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32, 232–258.CrossRefGoogle Scholar
  6. Falmagne, J.-Cl., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test, and search them. Psychological Review, 97, 201–224.CrossRefGoogle Scholar
  7. Koppen, M., & Doignon, J.-P. (1990). How to build a knowledge space by querying an expert. Journal of Mathematical Psychology, 34, 311–331.CrossRefGoogle Scholar
  8. Marshall, S.P. (1981). Sequential item selection: Optimal and heuristic policies. Journal of Mathematical Psychology, 23, 134–152.CrossRefGoogle Scholar
  9. Müller, C.E. (1989). A procedure for facilitating an expert’s judgments on a set of rules. In E. Roskam (Ed.), Mathematical Psychology in Progress (pp. 157–170). Berlin: Springer-Verlag.Google Scholar
  10. Wille, R. (1987). Bedeutungen von Begriffsverbänden. In B. Ganter, R. Wille, & K.E. Wolff, Beiträge zur Begriffsanalyse (pp. 161–211). Zürich: Bibliographisches Institut & Brockhaus AG.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Jean-Paul Doignon
    • 1
  1. 1.Université Libre de BruxellesBruxellesBelgium

Personalised recommendations