Some LBTL and LLTM Relationships

  • Gerhard H. Fischer
  • Norbert Tanzer
Part of the Recent Research in Psychology book series (PSYCHOLOGY)

Abstract

This paper investigates some relationships between the Bradley-Terry-Luce model, extended by imposing linear constraints on the parameters (LBTL), on the one hand, and the Rasch model, similarly extended by constraining the item parameters (linear logistic test model, LLTM), on the other. These relationships not only lead to a unified treatment and the formulation of analogous uniqueness results for the maximum likelihood estimators of the LBTL and conditional maximum likelihood estimators of the LLTM, but also yield a new uniqueness theorem for the joint maximum likelihood estimators for the LLTM. Possible applications of the results are indicated.

Keywords

Assure Eter Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E.B. (1973a). Conditional inference for multiple-choice questionnaires. British Journal of Mathematical and Statistical Psychology, 26, 31–44.CrossRefGoogle Scholar
  2. Andersen, E.B. (1973b). Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.Google Scholar
  3. Andersen, E.B. (1980). Discrete statistical models with social science applications. Amsterdam: North-Holland Publishing Company.Google Scholar
  4. Barisch, S. (1989). Einstellung zur Epilepsie und Einstellungsänderung durch Information. [Attitudes towards epilepsy and attitude change via information.] Master’s thesis. Vienna: University of Vienna.Google Scholar
  5. Bradley, R.A. (1984). Paired comparisons: Some basic procedures and examples. In P.R. Krishnaiah & P.K. Sen (Eds.), Handbook of statistics, Vol. 4 (pp. 299–326 ). New York: Elsevier Science Publishers.Google Scholar
  6. Bradley, R.A., & Terry, M.E. (1952). Rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika, 39, 324–345.Google Scholar
  7. Christofides, N. (1975). Graph theory. An algorithmic approach. London: Academic Press.Google Scholar
  8. El-Helbawy, A.T., & Bradley, R.A. (1977). Treatment contrasts in paired comparisons: Convergence of a basic iterative scheme for estimation. Communications in Statistics — Theory and Methods, 6, 197–207.CrossRefGoogle Scholar
  9. Embretson, S.E. (1985). Multicomponent latent trait models for test design. In S.E. Embretson (Ed.), Test design: Developments in psychology and psychometrics (pp. 195–218 ). Orlando: Academic Press.Google Scholar
  10. Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–514.CrossRefGoogle Scholar
  11. Fischer, G.H. (1972). A measurement model for the effect of mass-media. Acta Psychologica, 36, 207–220.CrossRefGoogle Scholar
  12. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.CrossRefGoogle Scholar
  13. Fischer, G.H. (1974). Einführung in die Theorie psychologischer Tests. [Introduction to the theory of psychological tests.] Bern: Huber.Google Scholar
  14. Fischer, G.H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 59–77.CrossRefGoogle Scholar
  15. Fischer, G.H. (1983a). Logistic latent trait models with linear constraints. Psychometrika, 48, 3–26.CrossRefGoogle Scholar
  16. Fischer, G.H. (1983b). Zum Problem der Validierung diagnostischer Entscheidungen in der Verkehrspsychologie. [On the problem of validating diagnostic decisions in traffic psychology.] Unpublished manuscript. Vienna: Department of Psychology, University of Vienna.Google Scholar
  17. Fischer, G.H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599–624.CrossRefGoogle Scholar
  18. Fischer, G.H. (1991). A new methodology for the assessment of treatment effects. Evaluación Psicológica — Psychological Assessment, 7, 117–147.Google Scholar
  19. Fischer, G.H. (1992). The Saltus Model revisited. Methodika, 6, 87–98.Google Scholar
  20. Fischer, G.H. (1993). The measurement of environmental effects: An alternative to the estimation of heritability in twin data. Methodika (in press).Google Scholar
  21. Fischer, G.H., & Formann, A.K. (1972). Conditional maximum–likelihood estimation of item parameters for a linear logistic test model. Research Bulletin, No. 9. Vienna: Department of Psychology, University of Vienna.Google Scholar
  22. Fischer, G.H., & Formann, A.K. (1981). Zur Schätzung der Erblichkeit quantitativer Merkmale. [On the estimation of the heritability of quantitative traits.] Zeitschrift für Differentielle und Diagnostische Psychologie, 2, 189–197.Google Scholar
  23. Fischer, G.H., & Formann, A.K. (1982a). Some applications of logistic latent trait models with linear constraints on the parameters. Applied Psychological Measurement, 4, 397–416.CrossRefGoogle Scholar
  24. Fischer, G.H., & Formann, A.K. (1982b). Veränderungsmessung mittels linear-logistischer Modelle. [Measuring change by means of linear logistic models.] Zeitschrift für Differentielle und Diagnostische Psychologie, 3, 75–99.Google Scholar
  25. Fischer, G.H., & Pendl, P. (1980). Individualized testing on the basis of the dichotomous Rasch model. In L.J.Th. van der Kamp, W.F. Langerak, & D.N.M. de Gruijter (Eds.), Psychometrics for educational debates (pp. 171–188 ). New York: Wiley.Google Scholar
  26. Ford, L.R.Jr. (1957). Solution of a ranking problem from binary comparisons. American Mathematical Monthly, 64, 28–33.CrossRefGoogle Scholar
  27. Formann, A.K. (1973). Die Konstruktion eines neuen Matrizentests und die Untersuchung des Lösungsverhaltens mit Hilfe des linear logistischen Test-modells. [The construction of a new matrices test and the investigation of test behavior by means of the linear logistic test model.] Doctoral dissertation. Vienna: University of Vienna.Google Scholar
  28. Formann, A.K., & Piswanger, K. (1979). Wiener Matrizen-Test. Ein Rasch-skalierter sprachfreier Intelligenztest. [The Viennese Matrices Test: A Rasch-scaled* nonverbal intelligence test.] Weinheim: Beltz Test.Google Scholar
  29. Gittler, G., & Wild, B. (1988). Der Einsatz des LLTM bei der Konstruktion eines Itempools für das adaptive Testen (pp. 115–139). [The use of the LLTM in constructing an item pool for adaptive testing.] In K.D. Kubinger (Ed.), Moderne Testtheorie. Weinheim: Beltz.Google Scholar
  30. Glas, C.A.W., & Verhelst, N.D. (1989). Extensions of the partial credit model. Psychometrika, 54, 635–659.CrossRefGoogle Scholar
  31. Haberman, S.J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815–841.CrossRefGoogle Scholar
  32. Hambleton, R.K. (1989). Principles and selected applications of item response theory. In R.L. Linn, (Ed.), Educational measurement (pp. 147–200). New York: Macmillan and London: Collier Macmillan.Google Scholar
  33. Harary, F., Norman, R.Z., & Cartwright, D. (1965). Structural models: An introduction to the theory of directed graphs. New York: Wiley.Google Scholar
  34. Heckl, U. (1976). Therapieerfolge bei der Behandlung sprachgestörter Kinder. [Effects of therapy in speech-handicapped children.] Doctoral dissertation. Vienna: University of Vienna.Google Scholar
  35. Heinrich, I. (1975). Beeinflussung des logischen Schlußprozesses durch semantische Variation seiner Elemente. [The influence of semantic variation of the elements of syllogisms on the reasoning process.] Psychologische Beiträge, 11, 497–518.Google Scholar
  36. Hornke, L.F., & Habon, M.W. (1986). Rule-based item bank construction and evaluation within the linear logistic framework. Applied Psychological Measurement, 10, 369–380.CrossRefGoogle Scholar
  37. Hornke, L.F., & Rettig, K. (1988). Regelgeleitete Itemkonstruktion unter Zuhilfenahme kognitionspsychologischer Überlegungen. [Rule-based item construction using concepts from cognitive psychology.] In K.D. Kubinger (Ed.), Moderne Testtheorie (pp. 140–162 ). Weinheim: Beltz.Google Scholar
  38. Iby, M. (1987). Die Ejfektivität von Kommunikationsseminaren in der innerbetrieblichen Ausbildung der Zentralsparkasse. [The efficacy of communication seminars for employees of the “Zentralsparkasse”.] Unpublished doctoral dissertation. Vienna: University of Vienna.Google Scholar
  39. Jacobsen, M. (1989). Existence and uniqueness of MLEs in discrete exponential family distributions. Scandinavian Journal of Statistics, 16, 335–349.Google Scholar
  40. Kubinger, K.D. (1979). Das Problemlöseverhalten bei der statistischen Auswertung psychologischer Experimente. Ein Beispiel hochschuldidaktischer Forschung. [The task solving behavior in the statistical analysis of psychological experiments. An example of research in didactics.] Zeitschrift für Experimentelle und Angewandte Psychologie, 26, 467–495.Google Scholar
  41. Kubinger, K.D. (1980). Die Bestimmung der Effektivität universitärer Lehre unter Verwendung des linear-logistischen Testmodells von Fischer — Neue Ergebnisse. [Determining the effects of teaching at universitiy by means of the linear logistic test model of Fischer — New results.] Archiv für Psychologie, 133, 69–70.PubMedGoogle Scholar
  42. Luce, R.D. (1959). Individual Choice Behavior. New York: Wiley.Google Scholar
  43. Mislevy, R.J. (1988). Exploiting auxiliary information about items in the estimation of Rasch item difficulty parameters. Applied Psychological Measurement, 12, 281–296.CrossRefGoogle Scholar
  44. Mutschlechner, R. (1987). Der Patient im Krankenhaus. – Ein Versuch, die Wirksamkeit einer psychologischen Betreuung nachzuweisen. [The patient in hospital.–An attempt to assess the effects of psychological treatments.] Doctoral dissertation. Vienna: University of Vienna.Google Scholar
  45. Nährer, W. (1980). Zur Analyse von Matrizenaufgaben mit dem linear logistischen Testmodell. [On the analysis of matrices items by means of the linear logistic test model.] Zeitschrift für experimentelle und angewandte Psychologie, 27, 553–564.Google Scholar
  46. Pfanzagl, J. (1993). On item parameter estimation in certain latent trait models. In G.H. Fischer & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 249–263 ). New York: Springer-Verlag.Google Scholar
  47. Piswanger, K. (1975). Interkulturelle Vergleiche mit dem Matrizentest von Formann. [Cross-cultural comparisons with Formann’s matrices test.] Doctoral dissertation. Vienna: University of Vienna.Google Scholar
  48. Rop, I. (1977). The application of a linear logistic model describing the effects of pre-school curricula on cognitive growth. In H. Spada & W. F. Kempf (Eds.), Structural models of thinking and learning (pp. 281–293 ). Bern: Huber.Google Scholar
  49. Scheiblechner, H. (1972). Das Lernen und Lösen komplexer Denkaufgaben. [The learning and solving of complex reasoning items.] Zeitschrift für experimentelle und angewandte Psychologie, 19, 476–506.Google Scholar
  50. Schmied, Ch. (1987). Die Effektivität von Managementseminaren, durchgeführt bei den Österreichischen Bundesbahnen. [The efficacy of management seminars for employees of the Austrian Federal Railways.] Doctoral dissertation. Vienna: University of Vienna.Google Scholar
  51. Sijtsma, K. (1982). Een lineair logistisch model ter verklaring van de moeilijkheidsparameters van breukrekenitems. [A linear logistic model for the explanation of difficulty parameters of fractional arithmetics items.] In J.G.L.C. Lodewijks & P.R.J. Simons (Eds.), Strategieen in leren en ontwikkeling (pp. 69–79 ). Lisse: Swets & Zeitlinger.Google Scholar
  52. Spada, H. (1976). Modelle des Denkens und Lernens. [Models of thinking and learning.] Bern: Huber.Google Scholar
  53. Spada, H., & Kluwe, R. (1980). Two models of intellectual development and their reference to the theory of Piaget. In R. Kluwe & H. Spada (Eds.), Developmental models of thinking (pp. 1–30 ). New York: Academic Press.Google Scholar
  54. Spada, H., & May, R. (1982). The linear logistic test model and its application in educational research. In D. Spearritt (Ed.), The improvement of measurement in education and psychology (pp. 67–84 ). Hawthorne, Victoria: The Australian Council for Educational Research.Google Scholar
  55. Spada, H., & McGraw, B. (1985). The assessment of learning effects by means of linear logistic test models. In S.E. Embretson (Ed.), Test design: Developments in psychology and psychometrics (pp. 169–194 ). Orlando: Academic Press.Google Scholar
  56. Tanzer, N. (1984). On the existence of unique joint maximum-likelihood estimates in linear logistic latent trait models for incomplete dichotomous data. Research Bulletin, No. 25. Vienna: Department of Psychology, University of Vienna.Google Scholar
  57. Traub, R.E., & Lam, R. (1985). Latent structure and item sampling models for testing. Annual Review of Psychology, 36, 19–48.CrossRefGoogle Scholar
  58. Van de Vijver, F.J.R. (1988). Systematizing the item content in test design. In R. Langeheine & J. Rost (Eds.), Latent trait and latent class models (pp. 291–307 ). New York: Plenum.Google Scholar
  59. Van Maanen, L., Been, P., & Sijtsma, K. (1989). The linear logistic test model and heterogeneity of cognitive strategies. In E.E. Roskam (Ed.), Mathematical psychology in progress (pp. 267–287 ). New York: Springer.Google Scholar
  60. Verhelst, N.D., Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58 (in press).Google Scholar
  61. Verhelst, N.D., Glas, C.A.W., & Verstralen, H.H.F.M. (1993). OPLM: a computer program and manual. Arnhem: CITO.Google Scholar
  62. Widowitz, E. (1987). Der Effekt autogenen Trainings bei funktionellen Erkrankungen. [The effect of “autogenous training” on the functional syndrome.] Master’s thesis. Vienna: University of Vienna.Google Scholar
  63. Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitve development. Psychological Bulletin, 105 (2), 276–289.CrossRefGoogle Scholar
  64. Wilson, M. (Ed.) (1992). Objective measurement. Theory into practice. Vol. 1. Norwood, NJ: Ablex Publishing Company.Google Scholar
  65. Witek, J. (1980). Die Effektivität gruppendynamischen Sensitivity Trainings. Zeitschrift für Experimentelle und Angewandte Psychologie, 27, 335–345.PubMedGoogle Scholar
  66. Zeman, M. (1980). Kursmäßige Legasthenikertherapie an Wiens Schulen. [Treatment programs for dislexic children in Viennese schools.] Vienna: Ketterl.Google Scholar
  67. Zermelo, E. (1929). Die Berechnung der Turnierergebnisse als ein Maximum-problem der Wahrscheinlichkeitsrechnung. [The computation of tournament results as a maximum-probability problem.] Mathematische Ztitschrift, 29, 436–460.Google Scholar
  68. Zimprich, H. (1980). Behandlungskonzepte und resultate bei psychosomatischen Erkrankungen im Kindesalter. [Treatment principles and results in psychosomatic diseases of children.] Pädiatrie und Pädologie, Supplement turn 6, 131–198.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Gerhard H. Fischer
    • 1
  • Norbert Tanzer
    • 2
  1. 1.Department of PsychologyUniversity of ViennaWienAustria
  2. 2.Department of PsychologyUniversity of GrazGrazAustria

Personalised recommendations