Skip to main content

Neoplastic Transformation: Oncogenes, Tumor Suppressors, Cyclins, and Cyclin-Dependent Kinases

  • Chapter
Hormones and Cancer

Part of the book series: Hormones in Health and Disease ((HHD))

  • 91 Accesses

Abstract

Cancer is a genetic disease that results from multiple genomic changes. These ultimately lead to the deregulation of the cell cycle machinery and to autonomous cell proliferation. Neoplastic transformation involves four sets of genes: 1) oncogenes, 2) tumor-suppressor genes, 3) mutator genes, and 4) apoptotic genes. In the hematopoietic system, the first step in oncogenesis is the activation of an oncogene that may then be followed by the activation of an additional oncogene and/or the loss of function of a tumor-suppressor gene. The activation of oncogenes may play a predominant role in the formation of sarcomas as well. Tumors of both the hematopoietic system and soft tissues exhibit a karyotype close to normal. On the other hand, carcinomas, the most prevalent forms of cancer, are predominantly due to the loss of function of tumor-suppressor genes with multiple sites of loss of heterozygosity (LOH), and they have dramatic alterations in the karyotype (Rabbitts, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson SA (1991): Growth factors and cancer. Science 254: 1146–1153

    PubMed  CAS  Google Scholar 

  • Ajchhenbaum F, Ando K, De Caprio JA, Griffin JD (1993): Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T lymphocytes. J Biol Chem 268: 4113–4119

    Google Scholar 

  • Anderson C.W. (1993): DNA damage and the DNA-activated protein kinase. TIBS 18: 433–437

    PubMed  CAS  Google Scholar 

  • Arnold A, Kim HG, Gaz RD, Eddy RL, Fukushima Y, Byers MG, Shows TB, Kronenberg HM (1993): Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 83: 2034–2040

    Google Scholar 

  • Bagchi S, Weinmann R, Raychaudhuri P (1991): The retinoblastoma protein co-purifies with E2F-1, and E1A-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–1072

    PubMed  CAS  Google Scholar 

  • Baldi A, De Luca A, Claudio PP, Baldi F, Giordano GG, Tommasino M, Paggi MG, Giordano A (1995): The Rb2/pl30 gene product is a nuclear protein whose phosphorylation is cell cycle regulated. J Cell Biochem 59: 402–408

    PubMed  CAS  Google Scholar 

  • Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G (1993): Cyclin DI is a nuclear protein required for cell cycle progression in G1. Genes Dev 7: 812–821

    PubMed  CAS  Google Scholar 

  • Bandara LR, La Thangue NB (1991a): Adenovirus El a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497

    PubMed  CAS  Google Scholar 

  • Bandara LR, Adamczewski J, Hunt T, La Thangue NB (1991b): Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 352: 249–251

    PubMed  CAS  Google Scholar 

  • Bandara LR, Buck VM, Zamanian M, Johnston LH, La Thangue, NB (1993): Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F. EMBO J 13: 4317–4324

    Google Scholar 

  • Bandara LR, Lam EW-F, Sorensen TS, Zamanian M, Girling R, La Thangue NB (1994): DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J 13: 3104–3114

    PubMed  CAS  Google Scholar 

  • Barak Y, Oren M. (1992): Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53 mediated growth arrest. EMBO J 11: 2115–2121

    PubMed  CAS  Google Scholar 

  • Barak Y, Juven T., Haffner R., Oren, M (1993): mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461–468

    Google Scholar 

  • Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C, Peters G (1994): Cdk6 (PLSTIRE) and Cdk4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with Cyclin D1. Oncogene 9: 71–79

    PubMed  CAS  Google Scholar 

  • Beijersbergen RL, Kerkhoven RM, Zhu L, Voorhoeve FM, Bernards R (1994): E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev 8: 2680–2690

    PubMed  CAS  Google Scholar 

  • Bianchi AB, Fischer SM, Robles Al, Rinchik EM, Conti CJ (1993): Overexpression of cyclin D1 in mouse skin carcinogenesis. Oncogene 8: 1127–1133

    PubMed  CAS  Google Scholar 

  • Bienz-Tadmor B, Zakut-Houri R, Libresco S, Givol D, Oren M (1985): The 5’ region of the p53 gene: evolutionary conservation and evidence for a negative regulatory element. EMBO J 4: 3209–3213

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D (1990): Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87: 4766–4770

    PubMed  CAS  Google Scholar 

  • Bookstein R, Shew JY, Chen PL, Scully P, Lee WH (1990 a):Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715

    Google Scholar 

  • Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE, Lee, WH (1990b): Promoter deletion and loss of retinoblastoma gene in human prostate carcinoma. Proc Natl Acad Sci USA 87: 7762–7766

    PubMed  CAS  Google Scholar 

  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D’Sa-Eipper C, Chinnadurai G (1994): Adenovirus E1B 19 KDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351

    PubMed  CAS  Google Scholar 

  • Bullrich F, MacLachlan TK, Sang N, Druck T, Veronese ML, Chiorazzi N, Koff A, Heubner K, Croce CM, Giordano A (1995): Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE and PITALRE and a cdk inhibitor, p27Kipl, to regions involved in human cancer. Cancer Res 55: 1199–1205

    PubMed  CAS  Google Scholar 

  • Cao L, Faha B, Dembski M, Tsai LH, Harlow E, Dyson N (1992): Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179

    PubMed  CAS  Google Scholar 

  • Cavenee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire, J, Philips RA, Gallie BL (1985): Genetic origin of mutations predisposing to retinoblastoma. Science 228: 501–503

    PubMed  CAS  Google Scholar 

  • Chellappan S, Hiebert S, Mudryj M, Horowitz J, Nevins J (1991): The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053–106

    PubMed  CAS  Google Scholar 

  • Chellappan SP (1994): The E2F transcription factor: role in cell cycle regulation and differentiation. Mol Cell Diff 2: 201–220

    CAS  Google Scholar 

  • Chen P, Scully P, Shew J, Wang JYJ, Lee W (1989): Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198

    PubMed  CAS  Google Scholar 

  • Chiou S-K, Rao L, White E (1994): Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14: 2556–2563

    PubMed  Google Scholar 

  • Chittenden T, Livingston DM, Kaelin WG (1991): The T/El A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA- binding protein. Cell 65: 1071–1082

    Google Scholar 

  • Chittenden T, Livingston DM, DeCaprio JA (1993): Cell cycle analysis of E2F in primary human T cells reveals novel E2F complexes and biochemically distinct forms of free E2F. Mol Cell Biol 13: 3975–3983

    PubMed  CAS  Google Scholar 

  • Clarke AR, Mandag AR, Roon MV, Lugt NM, Valk MV, Hooper ML, Berns A, Riele HT (1992): Requirement of a functional Rb-1 gene in murine development. Nature 359: 328–330

    PubMed  CAS  Google Scholar 

  • Claudio PP, Howard CM, Baldi A, De Luca A, Fu Y, Condorelli G, Sun Y, Colburn N, Calabretta B, Giordano A (1994): pl30/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107. Cancer Res 54: 5556–5560

    Google Scholar 

  • Clore G, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Groneborn AM (1994): High-resolution structure of the oligomerization domain of p53 by multi-dimensional NMR. Science 265: 386–391

    PubMed  CAS  Google Scholar 

  • Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA (1993): Cell cycle-specific association of E2F with the pi 30 El A-binding protein. Genes Dev 7: 2392–2404

    PubMed  CAS  Google Scholar 

  • Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA (1993): Cell cycle-specific association of E2F with the pi 30 El A-binding protein. Genes Dev 7: 2392–2404

    PubMed  CAS  Google Scholar 

  • Dang CV, and Lee WMF, (1989): Nuclear and nucleolar targeting sequences of c-erb, c-myc, N-myc, p53, HSP70 and HIV tat proteins. J Biol Chem 264: 18019–18023

    PubMed  CAS  Google Scholar 

  • Debbas M, and White E (1993): Wild-type p53 mediates apoptosis by El A which is inhibited by E1B. Genes Dev 7: 546–554

    PubMed  CAS  Google Scholar 

  • De Caprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM, (1988): SV40 Large Tumor Antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283

    Google Scholar 

  • De Caprio JA, Furukawa Y, Ajchenbaum F, Griffin JD, Livingston DM, (1992): The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc Natl Acad Sci USA 89: 1795–1798

    Google Scholar 

  • Deffie A, Wu H, Reinke V, Lozano G, (1993): The tumour suppressor p53 regulates its own transcription. Mol Cell Biol 13: 3415–3423

    PubMed  CAS  Google Scholar 

  • Desai D, Wessling HC, Fisher RP, Morgan DO (1995): Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol Cell Biol 15: 345–350

    PubMed  CAS  Google Scholar 

  • Devary Y, Gottlieb RA, Smeal T, Karin M, (1992): The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71: 1081–1091

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, Bradley A, (1992): Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221

    PubMed  CAS  Google Scholar 

  • Dowdy SF, Hinds PW, Lojuie K, Reed SI, Arnold A, Weinberg RA (1993): Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73: 499–511

    PubMed  CAS  Google Scholar 

  • Downes CS, and Wilkins AS, (1994): Cell cycle checkpoints, DNA repair and DNA replication strategies. Bio Essays 16: 75–79

    CAS  Google Scholar 

  • Draetta G, Beach D (1988): Activation of cdc2 protein kinase during mitosis in human cells: Cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26

    PubMed  CAS  Google Scholar 

  • Draetta G (1994): Mammalian Gl cyclins. Curr Opinion Cell Biol 6: 842–846

    PubMed  CAS  Google Scholar 

  • Dulic V, Lees E, Reed SI (1992): Association of human cyclin E with a periodic G1-Sphase protein kinase. Science 257: 1958–1961

    CAS  Google Scholar 

  • Dulic V, Kaufman WK, Wilson S, Tisty TD, Lees E, Harper JW, Elledge SJ, Reed SI (1994): p53-dependent inhibition of cyclin dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023

    Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J., Begemann M, Crabtree GR, Goff SP (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130

    PubMed  CAS  Google Scholar 

  • Durfee T, Becherer K, Chen P-L, Yeh S-H, Yang Y, Kilburn AE, Lee W-H, Elledge DSJ (1993): The retinoblastoma protein associates with the protein phosphatase type-1 catalytic subunit. Genes Dev 7: 555–569

    PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Muenger K, Harlow E (1989): The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937

    PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993): WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825

    PubMed  CAS  Google Scholar 

  • El-Deiry WS, Harper JW, O’Connor PM, Velculescu V, Canman CE, Jackman J, Pietenpol J, Burrel M, Hill DE, Wang Y, Wilman KG. (1994): WAF1/CIP1 is induced in p53 mediated Gl arrest and apoptosis. Cancer Res 4: 1169–1174

    Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984): Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312: 646–649

    PubMed  CAS  Google Scholar 

  • Elledge SJ, and Harper W (1994): Cdk inhibitors: on the threshold of checkpoints and development. Curr Opinion Cell Biol. 6: 847–852

    PubMed  CAS  Google Scholar 

  • Ewen ME, Ludlow JW, Marsilio E, De Caprio JA, Millikan RC, Cheng SH, Paucha E, Livingston DM (1989): An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both pi 10 Rb and a second cellular protein p 120. Cell 58: 257–267

    PubMed  CAS  Google Scholar 

  • Ewen ME, Xing Y, Lawrence JB, Livingston DM (1991): Molecular cloning, chromosomal mapping, and expression of the cDNA for pi07, a retinoblastoma gene product-related protein. Cell 66: 1155–1164

    PubMed  CAS  Google Scholar 

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM. (1993a): Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497

    PubMed  CAS  Google Scholar 

  • Ewen ME, Sluss L, Whitehouse L, Livingston D (1993b): Cdk4 modulation by TGF-β leads to cell cycle arrest. Cell 74: 1009–1020

    PubMed  CAS  Google Scholar 

  • Ewen ME (1994): The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev. 13: 45–66

    PubMed  CAS  Google Scholar 

  • Fang F, Newport J (1991): Evidence that the Gl-S and G2-M transitions are controlled by different Cdc2 proteins in higher eukaryotes. Cell 66: 731–742

    PubMed  CAS  Google Scholar 

  • Fearon ER, Vogelstein B (1990): A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    PubMed  CAS  Google Scholar 

  • Feinstein E, Gale RP, Reed J, Canaani E (1992): Expression of the normal p53 gene induces differentiation of K562 cells. Oncogene 7: 1853–1857

    PubMed  CAS  Google Scholar 

  • Fields S, Jang SK (1990): Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049

    PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ (1988): Activating mutations for transformation by p53 produce a gene product that forms an hsp-70-p53 complex with an altered half life. Mol Cell Biol 8: 531–539

    PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989): The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093

    PubMed  CAS  Google Scholar 

  • Firpo EJ, Koff A, Solomon MJ, Roberts JM (1994): Inactivation of a Cdk2 inhibitor during interleukin 2-induced proliferation of human T lymphocytes. Mol Cell Biol 14: 4889–4901

    PubMed  CAS  Google Scholar 

  • Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993): The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    PubMed  CAS  Google Scholar 

  • Fisher RP, Morgan DO (1994): A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell 78: 713–724

    PubMed  CAS  Google Scholar 

  • Flores-Rosaz H, Kelman Z, Dean F, Pan Z-Q, Harper JW, Elledge SJ, O’Donnell M, Hurwitz J (1994): Cdk-interacting protein-1 (CIP1, Wafl) directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase d holoenzyme. Proc Natl Acad Sci USA 91: 8655–8659

    Google Scholar 

  • Fornace Jr AL, Nebet DW, Holander MC, Lenthy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989): Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9: 4196–4203

    PubMed  CAS  Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986): A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646

    PubMed  CAS  Google Scholar 

  • Fung YK, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF (1987): Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657–1661

    PubMed  CAS  Google Scholar 

  • Gaffey MJ, Frierson HF Jr, William ME (1993): Chromosome 1 lql3, c-erb-2, and c-myc amplification in invasive breast carcinoma; clinicopathologic correlations. Mod Pathol 6: 654–659

    PubMed  CAS  Google Scholar 

  • Ginsberg D, Oren M, Yaniv M, Piette J (1990): Protein-binding elements in the promoter regions of the mouse p53 gene. Oncogene 5: 1285–1290

    PubMed  CAS  Google Scholar 

  • Ginberg D, Vairo G, Chittenden T, Xiao Z-X, Xu G, Wydner KL, DeCaprio JA, Lawrence JB, Livingston DM (1994): E2F4, a new member of the E2F transcription factor family, interacts with pl07. Genes Dev 8: 2665–2679

    Google Scholar 

  • Giordano A, Whyte P, Harlow E, Franza BR Jr, Beach D, Draetta G (1989): A 60 kd cdc2-associated polypeptide complexes with the El A proteins in adenovirus infected cells. Cell 58: 981–990

    PubMed  CAS  Google Scholar 

  • Giordano A, McCall C, Whyte P, Franza BR (1991a): Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus El A gene product. Oncogene 6: 481–485

    PubMed  CAS  Google Scholar 

  • Giordano A, Lee J, Scheppler JA, Herrmann C, Harlow E, Deuschle U, Beach D, Franza BR (1991b): Cell-cycle regulation of histone HI kinase activity associated with the adenoviral protein El A. Science 253: 1271–1275

    PubMed  CAS  Google Scholar 

  • Girard F, Strausfeld U, Fernandez A, Lamb N (1991): Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169–1179.

    PubMed  CAS  Google Scholar 

  • Girling R, Partridge JF, Bandara LR, Burden R, Totty NF, Hsuan JJ, La Thangue NB (1993): A new component of the transcription factor DRTF1/E2F. Nature 362: 83–87

    PubMed  CAS  Google Scholar 

  • Goodrich DW, Wang NP, Qian YW, Lee EYH, Lee W-H (1991): The retinoblastoma gene product regulates progression through the Gl phase of the cell cycle. Cell 67: 297–302

    Google Scholar 

  • Grana X, De Luca A, Sang N, Fu Y, Claudio PP, Rosenblatt J, Morgan DO, Giordano A (1994a): PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 91: 3834–3838

    PubMed  CAS  Google Scholar 

  • Grana X, Claudio PP, De Luca A, Sang N, Giordano A (1994b): PISSLRE, a human

    Google Scholar 

  • novel CDC-2 related protein kinase. Oncogene 9:2097–2103

    Google Scholar 

  • Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B (1993): Interaction of mitogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324

    PubMed  CAS  Google Scholar 

  • Gu Y, Turck CW, Morgan DO (1993): Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707–710

    PubMed  CAS  Google Scholar 

  • Guan K-L, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y (1994): Growth suppression by p18, a pl6INK4/MTSl-and pl4INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8: 2939–2952

    PubMed  CAS  Google Scholar 

  • Harlow E, Williamson NJ, Ralston R, Helfman DM, Adams TE (1985): Molecular cloning and in vitro expression of a cDNA clone for human cellular tumor antigen p53. Mol Cell Biol 5: 1601–1610

    PubMed  CAS  Google Scholar 

  • Harper JW, Adami G, Wei N, Keyomarsi K, Elledge SJ (1993): The 21 kd Cdk interacting protein Cip 1 is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75: 805–816

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989): Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634

    PubMed  CAS  Google Scholar 

  • Hartwell LH (1992): Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546

    PubMed  CAS  Google Scholar 

  • Hechman KA, Roberts J M (1994): Rules to replicate by. Cell 79: 557–562

    Google Scholar 

  • Helin K, Wu CL, Fattaey A, Lees JA, Dynlacht BD, Ngwu C, Harlow E (1993): Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative transactivation. Genes Dev 7: 1850–1861

    PubMed  CAS  Google Scholar 

  • Herrmann CPE, Kraiss S, Montenarh M (1991): Association of casein kinase II with immunopurified p53. Oncogene 6: 877–884

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins J (1992): The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6: 177–185

    PubMed  CAS  Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992): Regulation of retinoblastoma protein function by ectopic expression of human cyclins. Cell 70: 993–1006

    PubMed  CAS  Google Scholar 

  • Hoffman B., Liebermann DA (1994): Molecular controls of apoptosis: differentiation/ growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive and negative modulators. Oncogene 9: 1807–1812

    PubMed  CAS  Google Scholar 

  • Hollingsworth RE Jr, Hensey CE, Lee W-H (1993): Retinoblastoma protein and the cell cycle. Curr Opinion Genet Dev 3: 55–62.

    CAS  Google Scholar 

  • Horowitz JM, Yandell DW, Park SH, Canning S, Whyte P, Buchkovich K, Harlow E, Weinberg RA, Dryja TP (1989): Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–940

    PubMed  CAS  Google Scholar 

  • Horowitz JM, Park SH, Bogenmann E, Cheng JC, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA (1990): Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87: 2775–2790

    PubMed  CAS  Google Scholar 

  • Howes KA, Ransom N, Papermaster DS, Lasudry JGH, Albert DM, Windle JJ (1989): Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 8: 1300–1310

    Google Scholar 

  • Huang HJ, Yee JK, Shew JY, Chen PL (1988): Suppression of the neoplastic phenotype

    Google Scholar 

  • by replacement of the RB gene in human cancer cells. Science 242:1563–1566

    Google Scholar 

  • Huber HE, Edwards G, Goodhart PJ, Patrick DR, Huang PS, Iveyhoyle M, Barnett SF, Oliff A, Heimbrook DC (1993): Transcription factor E2F binds DNA has heterodimer. Proc Natl Acad Sci USA 90: 3525–3529

    PubMed  CAS  Google Scholar 

  • Hunt T. (1989): Maturation promoting factor, cyclin and the control of M-phase. Curr Opinion Cell Biol 1: 268–274

    PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1991): Cyclins and cancer. Cell 66: 1071–1074

    PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1994): Cyclins and Cancer II:cyclin D and CDK inhibitors come of age. Cell 79: 573–582

    PubMed  CAS  Google Scholar 

  • Hupp TR, Meek DW, Midgely CA, Lane DP (1992): Regulation of the specific DNA binding function of p53. Cell 71: 875–886

    PubMed  CAS  Google Scholar 

  • Ivey-Hoyle M, Conroy R, Huber HE, Goodhart PJ, Oliff A, Heimbrook DC, (1993): Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol 13: 7802–7812

    PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992): Effects of an Rb mutation in the mouse. Nature 395: 295–300

    Google Scholar 

  • Jenkins JR, Rudge K, Currie GA (1984): Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–654

    PubMed  CAS  Google Scholar 

  • Jenkins JR, Chumakov P, Addison C, Sturzbecher HW, Wade-Evans A (1988): Two distinct regions of the murine p53 primary amino acid sequence are implicated in stable complex formation with simian virus 40 T antigen. J Virol 62: 3903–3906

    PubMed  CAS  Google Scholar 

  • Jiang H, Lin J, Su ZZ, Collart FR, Huberman E, Fisher PB (1994): Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9: 3397–3406

    PubMed  CAS  Google Scholar 

  • Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB (1992): Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 52: 2980–2983

    PubMed  CAS  Google Scholar 

  • Johnson GL, Vaillancourt RR (1994): Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opinion Cell Biol 6: 230–238

    PubMed  CAS  Google Scholar 

  • Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigan SV, Stockert E, Day RSI, Johnson BE, Skolnick MH (1994): A cell cycle regulator potentially involved in the genesis of many tumor types. Science 264: 436–440

    PubMed  CAS  Google Scholar 

  • Karp JE, and Broder S (1994): New directions in molecular medicine. Cancer Res 54: 653–665

    PubMed  CAS  Google Scholar 

  • Kastan MB, Radin Al, Kuerbitz J, Onyekwere O, Wolkow CA, Civin CI, Stone KD, Woo T, Ravindranath Y, Craig RW (1991a): Levels of p53 increase with maturation in human hematopoietic cells. Cancer Res 51: 4279–4286.

    PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace A J Jr (1991b): A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–589

    Google Scholar 

  • Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993a): Direct binding of cyclin D to the retinoblastoma product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7: 331–342

    PubMed  CAS  Google Scholar 

  • Kato J, Sherr CJ (1993b): Inhibition of granulocyte differentiation by Gl cyclins, D2 and D3, but not DI. Proc Natl Acad Sci USA 90: 11513–11517

    PubMed  CAS  Google Scholar 

  • Kato J, Matsuoka M, Polyak K, Massague J, Sherr CJ (1994a): Cyclic AMP-induced Gl phase arrest mediated by an inhibitor (p27 kipl) of cyclin-dependent kinase-4 activation. Cell 79: 487–496

    PubMed  CAS  Google Scholar 

  • Kato J, Matsuoka M, Strom D, Sherr CJ (1994b): Regulation of cyclin D-dependent kinase (Cdk4) by Cdk4 activating kinase (Cak). Mol Cell Biol 14: 2713–2721

    PubMed  CAS  Google Scholar 

  • Kaye FJ, Kratzke RA, Gerster JL, Horowitz JM (1990): A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc Natl Acad Sci USA 87: 6922–6926

    PubMed  CAS  Google Scholar 

  • Keyomarsi K, Pardee AB (1993): Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90: 1112–1116

    PubMed  CAS  Google Scholar 

  • Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB (1994): Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54: 380–385

    PubMed  CAS  Google Scholar 

  • Kim S, Wagner S, Liu F, O’Reilly MA, Robbins PD, Green MR (1992): Retinoblastoma gene product activates expression of the human TGF-/3 gene through transcription factor ATF-2. Nature 358: 331–334

    PubMed  CAS  Google Scholar 

  • King RW, Jackson PK, Kirschner MW (1994): Mitosis in Transition. Cell 79: 563–571 )

    PubMed  CAS  Google Scholar 

  • Knudson AG Jr (1971): Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823

    PubMed  Google Scholar 

  • Knudson AG (1984): Retinoblastoma: clues to human oncogenesis. Science 228: 1028–1033

    Google Scholar 

  • Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M, Roberts JM (1991): Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66: 1197–1228

    Google Scholar 

  • Koff A, Giordano A, Desai D, Yamashita K, Harper W, Elledge S, Nishimoto T, Morgan D, Franza R, Roberts J (1992): Formation and activation of a cylin E-Cdk2 complex during the Gl phase of the human cell-cycle. Science 257: 1689–1693

    PubMed  CAS  Google Scholar 

  • Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J (1993): Negative regulation of Gl in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-/3. Science 260: 536–539

    PubMed  CAS  Google Scholar 

  • Kraiss S, Barnekow A, Montenarh M (1991): Protein kinase activity associated with immunopurified p53 protein. Oncogene 5: 845–855

    Google Scholar 

  • Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Livingston DM (1994): Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78: 161–172

    PubMed  CAS  Google Scholar 

  • Laiho M, DeCaprio J A, Ludlow JW, Livingston DM, Massague J (1990): Growth inhibition by TGF-B linked to suppression of retinoblastoma protein phosphorylation. Cell 62: 175–185

    PubMed  CAS  Google Scholar 

  • Lane DP, Crawford LV (1979): T antigen is bound to host protein in SV40- transformed cells. Nature 278: 261–263

    PubMed  CAS  Google Scholar 

  • Lane DP (1992): p53:Guardian of the genome. Nature 358:15–16

    Google Scholar 

  • Leach FS, Elledge SJ, Sherr CJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B (1993): Amplification of cyclin genes in colorectal carcinomas. Cancer Res 53: 1986–1989

    PubMed  CAS  Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992): Mice deficient for RB are nonviable and show defects in neurogenesis and hematopoiesis. Nature 359: 288–294

    PubMed  CAS  Google Scholar 

  • Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987): Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235: 1394–1399

    PubMed  CAS  Google Scholar 

  • Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K (1993): The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 13: 7813–7825

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW (1992): Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino- terminal transactivation domain of human p53. Mol Cell Biol 12: 5041–5049

    PubMed  CAS  Google Scholar 

  • Lew DJ, Dulic V, Reed SI (1991): Isolation of three novel human cyclins by rescue of Gl cyclin (cln) function in yeast. Cell 66: 1197–1206

    PubMed  CAS  Google Scholar 

  • Lew J, Huang Q-Q, Qi A, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994): A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 422–426

    Google Scholar 

  • Li S, MacLachlan TK, De Luca A, Claudio PP, Condorelli G, Giordano A (1995): The cdc2-related PISSLRE is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Research 55: 3992–3996

    PubMed  CAS  Google Scholar 

  • Li Y, Nichols MA, Shay JW, Xiong Y (1994): Transcriptional repression of the D type cyclin-dependent kinase inhibitor pi6 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54: 6078–6082

    PubMed  CAS  Google Scholar 

  • Lin W-C, Desidero S (1993): Regulation of V(J)D recombination activator protein RAG-2 by phosphorylation. Science 260: 953–959

    PubMed  CAS  Google Scholar 

  • Ludlow JW, DeCaprio JA, Huang C-M, Lee W-H, Paucha E, Livingston DM (1989): SV40 Large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56: 57–65

    PubMed  CAS  Google Scholar 

  • Mack DH, Vartikar J, Pipas JM, Laimins LA (1993) Specific repression of TATA- mediated but not initiator-mediated transcription by wild-type p53. Nature 363: 281–283

    PubMed  CAS  Google Scholar 

  • MacLachlan TK, Sang N, Giordano A (1995): Cyclins and cyclin-dependent kinases and CdK inhibitors: implications in cell cycle control and cancer. Critical Reviews in Eukaryotic Gene Expression 5: 127–156

    PubMed  CAS  Google Scholar 

  • Mascolo A, Levin S, Giordano A. (1992): A molecular biological approach to the study of nasopharyngeal cancer in Chinese Garment workers. Ramazzini Newsletter 2: 54–58

    Google Scholar 

  • Matlashewski G, Lamb P, Pim D, Peacock J, Crawford G, Benchimol S (1984): Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J 3: 3257–3262

    PubMed  CAS  Google Scholar 

  • Matsuoka M, Kato J, Fisher RP, Morgan DO, Sherr CJ (1994): Activation of cyclin- dependent kinase-4 (Cdk4) by mouse M015-associated kinase. Mol Cell Biol 14: 7265–7275

    PubMed  CAS  Google Scholar 

  • Matsushime H, Roussel M, Asmun R, Sherr CJ (1991a): Colony-stimulating factor 1 regulates novel cyclins during the Gl phase of the cell cycle. Cell 65: 701–713

    PubMed  CAS  Google Scholar 

  • Matsushime H, Roussel MF, Sherr CJ (1991b): Novel mammalian cyclins (CYL genes) expressed during Gl. Cold Spring Harbor Symposia 56: 69–74

    CAS  Google Scholar 

  • Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato J (1994): D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14: 2066–2076

    PubMed  CAS  Google Scholar 

  • Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A (1993): Cloning of a new member of the retinoblastoma gene family (pRb2), which binds to the El A transforming domain. Oncogene 8: 2561–2566

    PubMed  CAS  Google Scholar 

  • Meek DW (1994): Post -translational modification of p53. Semin Cancer Biol 5: 203–210

    PubMed  CAS  Google Scholar 

  • Mercer WE, Avignolo C, Baserga R (1984): Role of p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol Cell Biol 4: 276–281

    PubMed  CAS  Google Scholar 

  • Mercer WE, Shields MT, Amin M, Sauve GJ, Appella T, Romano JW, Ullrich SJ

    Google Scholar 

  • 1990): Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87: 6166–6170

    Google Scholar 

  • Meyerson M, Enders GH, Wu C-L, Su L-K, Gorka C, Nelson C, Harlow E, Tsai L-H (1992): A family of human cdc2-related protein kinases. EMBO J 11: 2909–2917

    PubMed  CAS  Google Scholar 

  • Meyerson M, Harlow E (1994): Identification of Gl kinase activity for Cdk6, a novel

    Google Scholar 

  • cyclin D partner. Mol Cell Biol 14:2077-2086 Milne DM, Palmer RH, Campbell DG, Meek DW (1992): Phosphorylation of the p53 tumour suppressor protein at three N-terminal residues by a novel casein kinase I-like enzyme. Oncogene 7: 1361–1369

    Google Scholar 

  • Milne DM, Campbell DG, Caudwell FB, Meek DW (1994): Phosphorylation of the tumour suppressor protein p53 by mitogen activated protein (MAP) kinases. J Biol Chem 269: 9253–9260

    PubMed  CAS  Google Scholar 

  • Milner J, Cook A, Mason J (1990): p53 is associated with p34CDC-2 in transformed cells. EMBO J 9: 2885–2889

    Google Scholar 

  • Minshull J, Golsteyn R, Hill CS, Hunt T (1990): The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J 9: 2865–2875

    PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson D, George D, Levine AJ (1992): The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245

    PubMed  CAS  Google Scholar 

  • Moran E (1993): DNA tumor virus transforming proteins and the cell cycle. Curr Opinion Genet Dev 3: 63–70

    CAS  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T, Depino RA (1994): p53-dependent apoptosis produced by Rb-deficiency in the eye. Nature 371: 72–74

    Google Scholar 

  • Motokura T, Bloom T, Kim YG, Jueppner H, Ruderman J, Kronenberh H, Arnold A (1991): A novel cyclin encoded by a bcl-l-linked candidate oncogene. Nature 350: 512–515

    PubMed  CAS  Google Scholar 

  • Murray AW, and Kirschner MW (1989): Dominoes and clocks: the union of two views of the cell cycle. Science 246: 614–621

    PubMed  CAS  Google Scholar 

  • Murray AW (1992): Creative blocks: cell cycle checkpoints and feedback control. Nature 359: 599–604

    PubMed  CAS  Google Scholar 

  • Murray AW (1994): Cell cycle checkpoints. Curr Opinion Cell Biol 6: 872–876

    PubMed  CAS  Google Scholar 

  • Musgrove EA, Hamilton JA, Lee CS, Sweeney KJE, Watts CK, Sutherland RL (1993) Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13: 3577–3587

    PubMed  CAS  Google Scholar 

  • Musgrove EA, Lee CS, Buckley MF, Sutherland RL (1994): Cyclin DI induction in breast cancer cells shortens G(l) and is sufficient for cells arrested in G(l) to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022–8026

    PubMed  CAS  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988): The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7: 4335–4336

    PubMed  CAS  Google Scholar 

  • Nasmyth K (1993): Control of the yeast cell cycle by the Cdc28 protein kinase. Curr Opinion Cell Biol 5: 166–179

    PubMed  CAS  Google Scholar 

  • Nelson WG, Kastan MB (1994): DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14: 1815–1823

    PubMed  CAS  Google Scholar 

  • Nevins JR (1992): E2F:A link between the Rb tumor suppressor protein and viral oncoprotein. Science 258: 424–429

    PubMed  CAS  Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994): Deletion of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756

    PubMed  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994): Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, and Nurse P (1994): How cells know they are in Gl or G2. Curr. Opinion Cell Biol 6: 867–871

    PubMed  Google Scholar 

  • Oliner JD, Inzler KW, Meltzer PS, George DL, Vogelstein B (1992): Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83

    PubMed  CAS  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW Vogelstein B (1993): Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362: 857–860

    PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993): Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

    PubMed  CAS  Google Scholar 

  • Pagano M, Theodoras AM, Tam SW, Draetta G (1993): Cyclin DI-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev 8: 1627–1639

    Google Scholar 

  • Pan H, Griep AE (1994): Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev 8: 1285–1299

    PubMed  CAS  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984): Cooperation between the gene encoding p53 tumor antigen and ras in cellular transformation. Nature 312: 649–651

    PubMed  CAS  Google Scholar 

  • Pardee AB (1989): Gl events and regulation of cell proliferation. Science 246: 603–608

    PubMed  CAS  Google Scholar 

  • Paterlini P, Suberville AM, Zindi F, Melle J, Sonnier M, Marie JP, Dreyfus F, Brechot C (1993): Cyclin A expression in human hematological malignancies: a new marker of cell proliferation. Cancer Res 53: 235–238

    PubMed  CAS  Google Scholar 

  • Peter M, Herskowitz I (1994): Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79: 181–184

    PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1990): Human cyclin A is adenovirus ElA-associated protein p60 and behaves differently from cyclin B. Nature 346: 760–763

    PubMed  CAS  Google Scholar 

  • Pines J (1994): Arresting development in cell-cycle control. TIBS 19: 143–145

    PubMed  CAS  Google Scholar 

  • Pinhasi-Kimhi O, Michalovitz D, Ben-Ze’ev A, Oren M (1986): Specific interaction between the p53 cellular tumor antigen and major heat shock proteins. Nature 320: 182–184

    PubMed  CAS  Google Scholar 

  • Polyak K, Lee M, Erdjement-Bromage H, Koff A, Roberts J, Tempst P, Massague J (1994a): Cloning of p27 kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66

    PubMed  CAS  Google Scholar 

  • Polyak K, Kato M, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994b): p27 kipl and Cyclin D-Cdk4 are interacting regulators of cdk2, and link TGF-/3 and contact inhibition to cell cycle arrest. Genes Dev 8: 9–22

    Google Scholar 

  • Prokocimer M, Rotter V (1994): Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood 84: 2391–2411

    PubMed  CAS  Google Scholar 

  • Qian Y, Luckey C, Horton L, Esser M, Templeton DJ (1992): Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Mol Cell Biol 12: 5363–5372

    PubMed  CAS  Google Scholar 

  • Quelle D, Ashmun R, Shurtleff S, Kato J, Bar-Sagi D, Roussel M, Sherr C (1993): Overexpression of mouse D-type cyclins accelerates Gl phase in rodent fibroblasts. Genes Dev 7: 1559–1571

    PubMed  CAS  Google Scholar 

  • Quin XQ, Chittenden T, Livingston DM, Kaelin WG. (1992): Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev 6: 953–964

    Google Scholar 

  • Rabbitts TH (1994): Chromosomal translocations in human cancer. Nature 372: 143–149

    PubMed  CAS  Google Scholar 

  • Radler-Pohl A, Sachsenmeier C, Gebel S, Auer H-P, Bruder JT, Rapp U, Angel P, Rahmsdorf HJ, Herrlich P (1993): UV-induced activation of AP-1 involves obligator extranuclear steps including Raf-1 kinase. EMBO J 12: 1005–1012

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR (1991): Domains of the adenovirus El A protein that are required for oncogenic activity are also required for dissociation of E2F transcription factor complex. Genes Dev 5: 1200–1211

    PubMed  CAS  Google Scholar 

  • Raycrof L, Wu H, Lozano G (1990): Transcriptional activation by wild type but not transforming mutants of the p53 anti-oncogene. Science 249: 1049–1051

    Google Scholar 

  • Reed DSI, Wittenberg C, Lew DJ, Dulic V, Henze M (1991): Gl control in yeast and animal cells. Cold Spring Harbor Symposia 56: 61–67

    CAS  Google Scholar 

  • Reisman D, Rotter V (1989): Two promoters that map to 5′-sequences of the human p53 gene are differentially regulated during terminal differentiation of human leukemic cells. Oncogene 4: 945–953

    PubMed  CAS  Google Scholar 

  • Renan MJ (1993): How many mutations are required for tumorigenesis?: Implications from human cancer data. Mol Carcinogen 7: 139–146

    CAS  Google Scholar 

  • Ronen D, Rotter V, Reisman D (1991): Expression from murine p53 promoter is mediated by factor-binding to a down stream helix-loop-helix recognition motif. Proc Natl Acad Sci USA 88: 4128–4132

    PubMed  CAS  Google Scholar 

  • Sala A, Nicolaides NC, Engelhard A, Bellon T, Lawe DC, Arnold A Grana X, Giordano A, Calabretta B (1994): Correlation between E2F-1 requirement in the S phase and E2F-1 transactivation of cell cycle-related genes in human cells. Cancer Res 54: 1402–1406

    PubMed  CAS  Google Scholar 

  • Sang N, Baldi A, Giordano A (1995): The roles of tumor suppressors pRb and p53 in cell proliferation and cancer. Mol Cell Differ 1: 1–29

    Google Scholar 

  • Sarnow P, Ho YSH, Williams J, Levine AJ (1982): Adenovirus E1B-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387–396

    PubMed  CAS  Google Scholar 

  • Scheffner M, Werness BA, Hulbregtse JM, Levine AJ, Howley PM (1990): The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136

    PubMed  CAS  Google Scholar 

  • Schwarz JK, Devoto SH, Smith EJ, Chellappan SP, Jakoi L, Nevins JR (1993): Interactions of the pi07 and Rb proteins with E2F during the cell proliferation response. EMBO J 12: 1013–1020

    PubMed  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann DA (1994): Immediate early up-regulation of bax expression by p53 but not TGF beta l:a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798

    PubMed  CAS  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993): A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/Cdk4. Nature 366: 704–707

    PubMed  CAS  Google Scholar 

  • Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D (1995): Inhibition of Ras-induced proliferation and cellular transformation by pl6INK4. Science 267: 249–252

    PubMed  CAS  Google Scholar 

  • Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinman R, Levine AJ, Shenk T (1992): Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89: 12028–12032

    PubMed  CAS  Google Scholar 

  • Sewing A, Burger C, Brusselbach S, Schalk C, Lucibiello F, Muller R (1993): Human cyclin DI encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J Cell Sci 104: 545–555

    PubMed  CAS  Google Scholar 

  • Shaulsky G, Goldfinger N, Peled A, Rotter V (1991): Involvement of wild type p53 in pre B-cell differentiation in vitro. Proc Natl Acad Sci USA 88: 8982–8986

    PubMed  CAS  Google Scholar 

  • Shaulsky G, Goldfinger N, Tosky MS, Levine AJ, Rotter V (1991): Nuclear localization is essential for the activity of p53 protein. Oncogene 6: 2055–2065

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1994): Gl phase progression: cycling on cue. Cell 79: 551–555

    PubMed  CAS  Google Scholar 

  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chitteden T, (1992): The transcription factor E2F interacts with the retinoblastoma product and a pl07-cyclin A complex in a cell cycle-regulated manner. Cell 66: 157–166

    Google Scholar 

  • Slebos RJ, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR (1994): p53-dependent Gl arrest involves pRb-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA 91: 5320–5324

    Google Scholar 

  • Smith ML, Chen IT, Ahan Q, Bae I, Chen C-Y, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJ Jr (1994): Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380

    PubMed  CAS  Google Scholar 

  • Smythe C, Newport J (1992): Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34CDC2. Cell 68: 787–797

    PubMed  CAS  Google Scholar 

  • Solomon E, Borrow J, Goddard AD (1991): Chromosome aberrations and cancer. Science 254: 1153–1160

    PubMed  CAS  Google Scholar 

  • Solomon MJ, Lee T, Kirschner MW (1992): Role of phosphorylation p34cd2 activation: identification of an activating kinase. Mol Biol Cell 3: 13–27

    PubMed  CAS  Google Scholar 

  • Spruck CH, Gonzalez-Zurueta M, Shibata A, Simoneau AR, Lin MF, Gonzales F, Tsai YC, Jones P (1994): pl6 gene in uncultured tumors. Nature 370: 183–184

    Google Scholar 

  • Sturzbecher HW, Maimets T, Chumakov P, Brain R, Addison C, Simanis V, Rudge K, Philp R, Grimaldi M, Court W, Jenkins JR (1990): p53 interacts with p34cdc-2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5: 795–801

    Google Scholar 

  • Sturzbecher H-W, Brain R, Addison C, Rudge K, Remm M, Grimaldi M, Keenan E, Jenkins JR (1992): A C-terminal a-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7: 1513–1523

    PubMed  CAS  Google Scholar 

  • Sun Y, Hegamyer G, Colburn N (1993): Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations. Oncogene 8: 791–795

    PubMed  CAS  Google Scholar 

  • Surmacz E, Reiss K, Sell C, Baserga R (1992): Cyclin DI messenger RNA is inducible by platelet-derived growth factor in cultured fibroblast. Cancer Res 52: 4522–4525

    PubMed  CAS  Google Scholar 

  • Symonds H, Krail L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994): p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–712

    Google Scholar 

  • Tam SW, Shay JW, Pagano M (1994): Differential expression and cell cycle regulation of the cyclin dependent kinase 4 inhibitor pi6 INK4. Cancer Res 54: 5816–5820

    PubMed  CAS  Google Scholar 

  • Toyoshima H, Hunter T (1994): p27, a novel inhibitor of Gl-cyclin Cdk protein kinase activity, is related to p21 Nature 78:67–74

    Google Scholar 

  • Tsai L-H, Delalle I, Cavins VS Jr, Chae T, Harlow E (1994): p35 is neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419–422

    Google Scholar 

  • Waga S, Hannon GJ, Beach D, Stillman B (1994): The p21 inhibitor of cyclin- dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578

    PubMed  CAS  Google Scholar 

  • Walker DH, Mailer JL (1991): Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354: 314–317

    PubMed  CAS  Google Scholar 

  • Wang J, Chenivesse X, Henglein B, Brechot C (1990): Hepatitis B virus integration in a cyclin A gene in a hepatocelluar carcinoma. Nature 343: 555–557

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1991): Tumor suppressor genes. Science 254: 1138–1145

    PubMed  CAS  Google Scholar 

  • Werness BA, Levine AJ, Howley PM (1990): Association of human papillomavirus type 16 and 18 E6 proteins with p53. Science 248: 76–79

    PubMed  CAS  Google Scholar 

  • Whyte P, Buckovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988): Association between an oncogene and an anti-oncogene: the adenovirus El A proteins bind to the retinoblastoma gene product. Nature 334: 124–127

    PubMed  CAS  Google Scholar 

  • Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T (1994): Cooperative tumorigenic effects of germline mutation in RB and p53. Nature Genet 7: 480–484

    PubMed  CAS  Google Scholar 

  • Wu X, Levine AJ (1994): p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606

    Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992a): Subunit rearrangment of the cyclin dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583

    Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992b): D-type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514

    PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang GJ, Casso D, Kobayashi R, Beach D (1993): p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    Google Scholar 

  • Yan L, Xi Z, Drettener B (1988): Epidemiological studies of nasopharyngeal cancer in the Guangzhou area, China. Preliminary report. Acta Otolaryngol 107: 424–427

    Google Scholar 

  • Yeung RS, Bell DW, Testa JR, Mayol X, Baldi A, Grana X, Klingalevan, K, Knudson AG, Giordano A (1993): The retinoblastoma-related gene, RB2, maps to human chromosome 16ql2 and rat chromosome Oncogene 8: 3465–3468

    PubMed  CAS  Google Scholar 

  • Zamanian M, La Thangue NB (1992): Adenovirus El a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. EMBO J 11: 2603–2610

    PubMed  CAS  Google Scholar 

  • Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace A J Jr (1994): The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14: 2361–2371

    PubMed  CAS  Google Scholar 

  • Zhu L, Van Den Heuvel S, Helin K, Fattaey A, Ewen M, Livingston D, Dyson N, and Harlow E (1993): Inhibition of cell proliferation by 107, a relative of the retinoblastoma protein. Genes Dev 7: 1111–1125

    PubMed  CAS  Google Scholar 

  • Zlegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994): Sunburn and p53 in the onset of skin cancer. Nature 372: 773–776

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Howard, C.M., Giordano, A. (1996). Neoplastic Transformation: Oncogenes, Tumor Suppressors, Cyclins, and Cyclin-Dependent Kinases. In: Vedeckis, W.V. (eds) Hormones and Cancer. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4266-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4266-6_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8715-5

  • Online ISBN: 978-1-4612-4266-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics