Skip to main content

Resolution of Diagonals and Moduli Spaces

  • Conference paper
The Moduli Space of Curves

Part of the book series: Progress in Mathematics ((PM,volume 129))

Abstract

This paper is a continuation of [BG]. In that paper, for any smooth complex curve X and n > 1, we constructed a canonical completion of the configuration space of all ordered n-tuples of distinct points of X. The completion is called Resolution of Diagonals. There is a natural stratification of the resolution of diagonals with the set of strata being parametrized by certain graphs. The homology groups of the strata turn out to be closely related to free Lie algebras. That relation played a crucial role in [BG]. It was used there for describing jets of functions on moduli spaces of principal G-bundles, a higher order analogue of the Kodaira-Spencer isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold. The Cohomology ring of colored Braid group. Matem. Zametki. 5 (1969), 227–231.

    Google Scholar 

  2. S. Axelrod, S. Delia Pietra, E. Witten. Geometric Quantization of Chern - Simons gauge theory. Journ. Diff. Geom. 33 (1991), 787–902.

    MATH  Google Scholar 

  3. A. Beilinson, v. Drinfeld. Affine Kac-Moody algebras and Poly differentials. Intern. Mathem. Research Notices, (1994), 1, 1–11.

    Google Scholar 

  4. A. Beilinson, V. Ginzburg. Infinitesimal structure of moduli spaces of G- bundles. Intern. Mathem. Research Notices, Duke Math. J. 4 (1992), 63–74.

    Article  MathSciNet  Google Scholar 

  5. A. Beilinson, D. Kazhdan. Flat projective connection. Preprint 1991.

    Google Scholar 

  6. A. Beilinson, V. Schechtman. Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118 (1988), 651–701.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Cohen. The cohomology of C n–spaces. Lect. Notes in Math. 533 (1976), 207–351.

    Google Scholar 

  8. P. Deligne. Théorie de Hodge II. Publ. Mathem. I.H.E.S. 40 (1971), 5 - 58.

    Google Scholar 

  9. H. Esnault, E. Viehweg. Higher Kodaira-Spencer classes. Mathem. Annal. 299 (1994), 491–527.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Esnault, V. Schechtman, E. Viehweg. Cohomology of local systems on the complement of hyperplanes. Invent. Mathem. 109 (1992), 557–561.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Faltings. Stable G-bundles and Projective connections. J. Algebr. Geom. 2 (1993), 507–568.

    Google Scholar 

  12. I. Frenkel, J. Lepowsky, A. Meurman. Vertex Operator Algebras and the Monster. Academic Press, Boston, 1988.

    MATH  Google Scholar 

  13. W. Fulton, R. MacPherson. A compactification of Configuration spaces. Annals of Math. 139 (1993), 183–225.

    Article  MathSciNet  Google Scholar 

  14. V. Ginzburg, M. Kapranov. Koszul duality for Operads. Duke Math. Journ. 76 (1994), 203–272.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Hinich, V. Schechtman. On homotopy limit of homotopy algebras. Lect. Notes in Math. 1287 (1987), 240–264.

    Article  MathSciNet  Google Scholar 

  16. N. Hitchin. Projective connections and Geometric Quantization. Commun. Math. Phys. 131 (1990), 347–380.

    Google Scholar 

  17. M. Kontsevich. Formal non-commutative symplectic geometry. G elf and Mathematical Seminar 1990–1992. Birkhäuser, Boston 1993, pp. 173–187.

    Google Scholar 

  18. J.P. May. The geometry of iterated loop spaces. Lect. Notes in Math. 271 (1972).

    Google Scholar 

  19. Z. Ran. Derivatives of Moduli. Intern. Mathem. Research Notices, Duke Math. J. (1993), 4, 93–106.

    Google Scholar 

  20. C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. Preprint, Princeton University (1989).

    Google Scholar 

  21. V. Schechtman, A. Varchenko. Arrangements of hyperplanes and Lie algebra Homology. Invent. Math. 106 (1991), 139–194.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Tsuchiya, K. Ueno, Y. Yamada. Conformal field theory on Universal family of stable curve with gauge symmetries. Adv. Studies in Pure Math. 19 (1989), 459–566.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this paper

Cite this paper

Ginzburg, V. (1995). Resolution of Diagonals and Moduli Spaces. In: Dijkgraaf, R.H., Faber, C.F., van der Geer, G.B.M. (eds) The Moduli Space of Curves. Progress in Mathematics, vol 129. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4264-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4264-2_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8714-8

  • Online ISBN: 978-1-4612-4264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics