Automatic Meshing of Curved Three—Dimensional Domains: Curving Finite Elements and Curvature-Based Mesh Control

  • Mark S. Shephard
  • Saikat Dey
  • Marcel K. Georges
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 75)

Abstract

Specific issues associated with the automatic generation of finite element meshes for curved geometric domains are considered. A review of the definition of when a triangulation is a valid mesh, a geometric triangulation, for curved geometric domains is given. Consideration is then given to the additional operations necessary to maintain the validity of a mesh when curved finite elements are employed. A procedure to control the mesh gradations based on the curvature of the geometric model faces is also given.

Keywords

Expense Hull Clarification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.L. de Cougny and M.S. Shephard, Refinement, derefinement and local retri-angulations in three-dimensions, 1994, in preparation for submission.Google Scholar
  2. [2]
    E.B. de I’Isle and P.L. George, Optimization of tetrahedral meshes. Technical report, INRIA, Domaine de Voluceau. Rocquencourt, BP 105, 78153 Le Chesnay Cedex, Francc.Google Scholar
  3. [3]
    S. Dey, Curvature sensitive refinements in 3D automatic mesh generation. Master’s thesis. Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, May 1993.Google Scholar
  4. [4]
    G. Farin, Curves and Surface for Computer Aided Geometric Design. Academic Press Inc., 1990.Google Scholar
  5. [5]
    P.L. George, Generation de maillages par une methode de type Voronoi, Par tie 2: le cas tridimensionnel. Technical Report RR INRIA n 1664, INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France, 1993.Google Scholar
  6. [6]
    D.H. Hoitsma, Surface curvature analysis. In Geometric Modeling for Product Engineering. North-Holland, Amsterdam, 1990.Google Scholar
  7. [7]
    T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element. Prentice Hall, Englewood Cliffs, NJ, 1987.MATHGoogle Scholar
  8. [8]
    M. Mortenson, Geometric Modeling. J. Wiley and Sons, New York, 1985.Google Scholar
  9. [9]
    PDA Engineering, PATRAN Division, 2975 Redhill Avenue, Costa Mesa, CA 92626. Patran Plus User Manual, Release 2. 5, October 1990.Google Scholar
  10. [10]
    W.J. Schroeder, Geometric Triangulations: with Application to Fully Automatic 3D Mesh Generation. PhD thesis, Rensselaer Polytechnic Institute, Scientific Computation Research Center, RPI, Troy, NY 12180–3590, May 1991.Google Scholar
  11. [11]
    W.J. Schroeder and M.S. Shephard, An O(N) algorithm to automatically generate geometric triangulation satisfying the Delaunay circumsphere criteria. Engng. with Computers, (5(3/4): 177–194, 1989.CrossRefGoogle Scholar
  12. [12]
    W.J. Schroeder and M.S. Shephard, A combined octree/Delaunay method for fully automatic 3-D mesh generation. Int. J. Numcr. Meth. Engng.. 29: 37–55, 1990.MATHCrossRefGoogle Scholar
  13. [13]
    W.J. Schroeder and M.S. Shephard, On rigorous conditions for automatically generated finite element meshes. In J. Turner, J. Pegna, and M. Wozny, editors, Product Modeling for Computer-Aided Design and Manufacturing, pages 267–281. North Holland, 1991.Google Scholar
  14. [14]
    M.S. Shephard, Automatic generation of finite element models. In M. Papadrakais, editor. Solving Large Scale Problems in Mechanics: The Development and Applications of Computational Solution Methods, to appear 1992.Google Scholar
  15. [15]
    M.S. Shephard and M.K. Georges, Automatic three-dimensional mesh generation by the Finite Octree technique. Int. J. Numer. Meth. Engng., 32 (4): 709–749, 1991.MATHCrossRefGoogle Scholar
  16. [16]
    M.S. Shephard and M.K. Georges, Reliability of automatic 3-D mesh generation. Comp. Meth. Appi. Medi. Engng.. 101: 443–462. 1992.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    B.A. Szabo and I. Babuska, Finite Element Analysis. Wiley Interscience, New York, 1991.MATHGoogle Scholar
  18. [18]
    O.C. Zienkiewics and R.L. Taylor, The Finite Element Method - Volume 1. McGraw-Hill Hook Co., New York, 4th edition, 1987.Google Scholar

Copyright information

© Springer-Verlag New York 1995

Authors and Affiliations

  • Mark S. Shephard
    • 1
  • Saikat Dey
    • 1
  • Marcel K. Georges
    • 1
  1. 1.Scientific Computation Research CenterRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations