Monitoring Environmental Change Through Amphibian Populations

  • Rafael Márque
  • Pere Alberch
Part of the Ecological Studies book series (ECOLSTUD, volume 117)


There has been much research on the use of biological indicators for the detection of pollution and specific pollutants in the developed world (see review in Spellerberg, 1991). On the other hand, the identification and monitoring of natural populations of species which best reflect the overall condition of the environment (indicator species) has not been given sufficient attention. Changes in the populations of these indicator species may best reflect long-term, large-scale changes at a regional or even global level. Extinction-prone species should be identified so that systematic monitoring programs can be established to ensure early detection of the causes of species decline (Beiswenger, 1986). Such long-term monitoring programs arc among the most important tasks that modern museums of natural history face today. Museums have in the past gathered precious biogeographical information that may be contrasted with current censuses of species. Museums should actively participate in the development of standardized monitoring techniques as well as in the identification of species that can be used as early warning systems (a global version of the concept of “the canary in a coal mine”). Here we present the case for amphibians, as an example of a taxonomic group that has the potential to include many useful biological indicators.


Mediterranean Ecosystem Cane Toad Amphibian Population Rana Catesbeiana Frog Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous. 1991. Declining amphibian populations—a global phenomenon? Findings and recommendations. Alytes 9: 33–42.Google Scholar
  2. Barinaga M. 1990. Where have all the froggies gone? Science 247: 1033–1034.CrossRefGoogle Scholar
  3. Beebe TJC. 1992. Amphibian decline? Nature 355: 120.CrossRefGoogle Scholar
  4. Beiswenger R. 1986. An endangered species, the Wyoming toad Bufo hemiophrys baxteri. The importance of an early warning system. Bio Conserv 37: 59–71.CrossRefGoogle Scholar
  5. Blaustein AR, Wake DB. 1990. Declining amphibian populations: A global phenomenon? Trends Ecol Evol 5: 203–204.CrossRefGoogle Scholar
  6. Bradford DF. 1991. Mass mortality and extinction in a high elevation population of Rana muscosa. J Herpetol 25: 174–177.CrossRefGoogle Scholar
  7. Burton TM, Likens GE. 1975. Salamander populations and biomass in the Hubbard Brook Experimental Forest, New Hampshire. Copcia 1975: 541–546.CrossRefGoogle Scholar
  8. di Castri F. 1981. Mediterranean-type shrublands of the world. In: F di Castri, DW Goodall, and RL Specht (eds) Mediterranean-type shrublands. Ecosystems of the World Vol 11: 1–52. Elsevier, Amsterdam.Google Scholar
  9. Corben CJ, Ingram GJ, Tyler MJ. 1974. Gastric brooding: unique form of parental care in Australian frog. Science 186: 946–947.CrossRefGoogle Scholar
  10. Corn PS. Fogleman JC. 1984. Extinction of montane populations of the northern leopard frog ( Rana pipiens) in Colorado. J Herpetol 18: 147–152.CrossRefGoogle Scholar
  11. Crump ML, Hensley FR, Clarck KL. 1992. Apparent decline of the golden toad: underground or extinct? Copeia 1992: 413–420.CrossRefGoogle Scholar
  12. Diamond JM. 1984. “Normal” extinctions of isolated populations. In: MH Nitteki (ed) Extinctions. University of Chicago Press, Chicago, IL, pp. 91–246.Google Scholar
  13. Duellman WE, Trueb L. 1985. Biology of Amphibians. McGraw-Hill, New York.Google Scholar
  14. Fellers GM, Drost CA. 1993. Decline of anurans in national parks in western United States. Proceedings Second World Congress of Herpetology, University fo Adelaide, Australia, Dec 29 1993-Jan 6 1994.Google Scholar
  15. Freda J, Dunson WA. 1985. Field and laboratory studies of ion balance and growth rates of ranid tadpoles chronically exposed to low Ph. Copeia 1985: 415 –423.CrossRefGoogle Scholar
  16. Hayes MP, Jennings MR. 1986. Decline of ranid frog species in western North America: Are bullfrogs (Rana catesbeiana) responsible? J Herpetol 20: 490–509.CrossRefGoogle Scholar
  17. Heyer WR, Rand AS, Goncalvez da Cruz CA, Peixoto OL. 1988. Decimations, extinctions and colonizations of frog populations in Southeast Brazil and their evolutionär)-implications. Biotropica 20: 230–235.CrossRefGoogle Scholar
  18. Heyer WR, Rand AS, Gongalvez da Cruz CA, Peixoto OL, Nelson CE. 1990. Frogs of Boraceiá. Arq Zool S Paulo 31: 237–410.Google Scholar
  19. Ibarra-Vidal H. 1989. Impacto de las actividades humanas sobre la herpetofauna en Chile. Común Mus Reg Concepción 3: 33–39.Google Scholar
  20. Kirk JJ. 1988. Western spotted frog (Rana pretiosa) mortality following forest spraying of DDT. Herp Rev 19: 51–53.Google Scholar
  21. Lamotte M, Lescure J. 1977. Tendances adaptatives á l’affranchissement du milieu aquatique chez les amphibiens anoures. Terre Vic 31: 225–331.Google Scholar
  22. Márquez R. 1992. Terrestrial paternal care and short breeding seasons: reproductive phcnologv of the midwife toads Alytes obstetricans and A. cisternasii. Ecography 15: 279–288.CrossRefGoogle Scholar
  23. Martin DL. 1993. Standardized survey of anurans in the Sierra Nevada. Proceedings Second World Congress of Herpetology. University of Adelaide, Australia, Dec 29 1993-Jan 6 1994.Google Scholar
  24. Moyle PB. 1973. Effccts of introduced bullfrogs. Rana catesbeiana. on the native frogs of the San Joaquin Valley. California. Copeia 1973: 18–22.Google Scholar
  25. Pechmann JHK. Scott DE. Semlitsch RD. Caldwell JP. Vitt LD. Gibbons JW. 1991. Declining amphibian populations: the problem of separating human impacts from natural fluctuation. Science 253: 892–895.CrossRefGoogle Scholar
  26. Pierce BA. 1985. Acid tolerance in Amphibians. Bioscience 35: 239–243.CrossRefGoogle Scholar
  27. Pierce BA, Montgomery J. 1989. Effects of short-term acidification on growth rates of tadpoles. J Herpetol 23: 97–102.CrossRefGoogle Scholar
  28. Pounds AJ. 1990. Disappearing gold. BBC Wildldife December: 813–817.Google Scholar
  29. Pounds AJ. 1991. The secret Sahara. BBC Wildlife 9: 381.Google Scholar
  30. Pounds AJ. 1992. New cues in the case of disappearing amphibians, Wildlife Conserv 16–18.Google Scholar
  31. Reques R, Tejedo M. 1991. Fenología y hábitats reproductivos de una comunidad de anfibios en la Sierra de Cabra (Córdoba). Rev Esp Herp 6:49– 54.Google Scholar
  32. Rodríguez-Jiménez AJ. 1988. Fenología de una comunidad de anfibios asociada a cursos fluviales temporales. Doñana Acta Vertebrata 15: 29–43.Google Scholar
  33. Salthe SN, Mecham JS. 1974. Reproductive and courtship patterns. In: B Lofts (ed) Physiology of the Amphibia. Academic Press. New York, pp. 309–521.Google Scholar
  34. Salvador A, Carrascal LM. 1990. Reproductive phenology and temporal patterns of mate access in Mediterranean anurans. J Herpctol 24: 438–441.CrossRefGoogle Scholar
  35. Schaffer BH, Scott S, Fisher RF. 1993. The genetics of decline: a case study of the California tiger salamander Ambystoma californiense. Proceedings Second World Congress of Herpetology, University of Adelaide, Australia, Dec 29 1993-Jan 6 1994.Google Scholar
  36. Spellerberg IF. 1991. Monitoring ecological change. Cambridge University Press, Cambridge, UK.Google Scholar
  37. Tejedo M. 1989. Exito reproductor y selección sexual en el sapo corredor Bufo calamita. Tesis Doctoral Universidad de Cordoba Facultad de Ciencias Biológicas.Google Scholar
  38. Tyler MJ. 1983. The gastric brooding frog. Croom Helm. London.Google Scholar
  39. Tyler MJ. 1991. Declining amphibian populations—a global phenomenon? An Australian perspective. Alytes 9: 43–50.Google Scholar
  40. Vial JL, Saylor L. 1993. The status of Amphibian populations, a compilation and analysis. International Union for the Conservation of Nature. Species Survival Commission. Declining Amphibian Populations Task Force Working Document No 1.Google Scholar
  41. Wake DB. 1991. Declining amphibian populations. Science 253: 860.CrossRefGoogle Scholar
  42. Werner EE. 1986. Amphibian metamorphosis: growth rate, predation risk, and optimal size at transformation. Am Nat 128: 319–348.CrossRefGoogle Scholar
  43. Wilson EO. 1988. The current state of biological diversity. In: EO Wilson (ed) Biodiversity National Academic Press, Washington DC, pp. 3–20.Google Scholar
  44. Wyman RL. 1988. Soil acidity and the distribution of amphibians in five forests of southcentral New York. Copeia 1988:394–399.Google Scholar
  45. Wyman RL. 1990. What’s happening to the amphibians? Conserv Biol 4: 350–352.CrossRefGoogle Scholar
  46. Wyman RL, Hawksley-Lescault DS. 1987. Soil acidity affects distribution, behavior, and physiologv of the salamander Plethodon cinereus. Ecologv 68: 1819–1827.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Rafael Márque
  • Pere Alberch

There are no affiliations available

Personalised recommendations