Skip to main content

Ecosystem Response to Elevated CO2: Nutrient Availability and Nutrient Cycling

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 117))

Abstract

Atmospheric CO2 levels have risen from an estimated preindustrial concentration of 280µLL-1 (Friedli et al., 1986; Neftel et al., 1985) to 350µLL-1 today (Boden et al., 1990) and, even using conservative assumptions regarding future energy sources, could increase to 600 µLL-1 by the end of the next century (Ausubel et al., 1988). The increase in agricultural crop yield which could result from a doubling of preindustrial CO2 levels has been suggested to be in the range of 30–40% (Kimball, 1983; Cure and Acock, 1986). However, natural ecosystem responses to increasing atmospheric CO2 levels are more difficult to predict, as their mechanistic basis remains poorly understood (Bazzaz, 1990), especially in terms of system processes and interactions between system components (Morison, 1990). Such an understanding depends heavily on the elucidation of the linkages between plant carbon uptake, carbon allocation, and nutrient cycling. Because these processes interact, disruption of any one often induces changes in others, which then leads to either positive reinforcement or negative feedback at the ecosystem level. This interaction is critical for the ultimate structural, functional, and floristic nature of the altered ecosystem. Natural ecosystems of certain Mediterranean climate regions have been shown to be altered substantially by changes in nutrient availability (Specht, 1963) in terms of species composition and system functioning, and it appears that rising atmospheric C02 levels may hold a similar threat, but at a global scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison FE, Klein CJ. 1961. Comparative rates of decomposition in soil of wood and bark particles of several softwood species. Proc Soil Sci Soc Am 25:193– 196.

    Article  CAS  Google Scholar 

  • Amthor JS. 1991. Respiration in a future, higher C02 world. Plant Cell Environ 14: 13–20.

    Article  CAS  Google Scholar 

  • Arianoutsou M. 1989. Timing of litter production in a maquis ecosystem of northeastern Greece. Acta Oecol 10: 371–378.

    Google Scholar 

  • Arp WJ. 1991. Effects of source–sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14: 869–875.

    Article  CAS  Google Scholar 

  • Ausubel JH, Grübler A, Nakicenovic N. 1988. Carbon dioxide emissions in a methane economy. Climate Change 12: 245–263.

    Article  CAS  Google Scholar 

  • Baas WJ. 1989. Secondary plant compounds, their ecological significance and consequences for the carbon budget. In: lumbers H (cd) Causes and Consequences of Variation of Growth Rate and Productivity of Higher Plants. SPB Academic Publishing, The Hague, Netherlands.

    Google Scholar 

  • Bazzaz FA. 1990. The response of natural ecosystems to the rising global C02 levels. Ann Rev Ecol Syst 21: 167–196.

    Article  Google Scholar 

  • Berendse F, Berg B. Bosatta E. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems. Can J Bot 65: 1116–1120.

    Article  CAS  Google Scholar 

  • Berendse F, Elberse WTH, Geerts RHME. 1992. Competition and nitrogen loss from plants in grassland ecosystems. Ecology 73:46–53.

    Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Ann Rev Ecol Syst 16: 363–392.

    Google Scholar 

  • Boden TA, Kanciruk P, Farrell MP. 1990. Trends ’90: A compendium of data on global change. ORNL/CDIAC-36. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Bowes G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ 14: 795–806.

    Article  CAS  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Google Scholar 

  • Chapin FS. 1980. The mineral nutrition of wild plants. Ann Rev Ecol Syst 11: 233–260.

    Article  CAS  Google Scholar 

  • Chapin FS. 1988. Ecological aspects of plant mineral nutrition. Adv Mineral Nutr 3: 161–191.

    Google Scholar 

  • Chapin FS, Vitousek PM, van Cleve K. 1986. The nature of nutrient limitation in plant communities. Am Nat 27: 48–58.

    Google Scholar 

  • Cody ML, Mooney HA. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann Rev Ecol Syst 9: 265–321.

    Article  Google Scholar 

  • Coleman JS, Rochefort L, Bazzaz FA. Woodward FI. 1991. Atmospheric C02, plant nitrogen status and the susceptibility of plants to an acute increase in temperature. Plant Cell Environ 14:667–674.

    Google Scholar 

  • Conroy JP. 1992. Influence of elevated atmospheric C02 concentrations on plant nutrition. Aust J Bot 40:445– 456.

    CAS  Google Scholar 

  • Conroy JP, Milham PJ, Mazur M, Barlow WR. 1990a. Growth, dry weight partitioning and wood properties of Pinus radium D. Don after 2 years of C02 enrichment. Plant Cell Environ 13: 329–337.

    Article  Google Scholar 

  • Conroy JP. Milham PJ, Reed ML. Barlow EW. 1990b. Increases in phosphorus requirements for C02-enriched Pine species. Plant Physiol 92: 977–982.

    Google Scholar 

  • Cowling RM. Campbell B. 1980. Convergence in vegetation structure in the Mediterranean communities of California, Chile and South Africa. Vegetatio 43: 191–197.

    Article  Google Scholar 

  • Cure JD. Acock B. 1986. Crop response to carbon dioxide doubling: a literature survey. Agric For Met 38: 127–145.

    Article  Google Scholar 

  • Cure JD, Rufty TW, Israel DW. 1991. Assimilate relations in source and sink leaves during acclimation to a C02-enrichcd atmosphere. Physiol Plant 83: 687–695.

    Article  Google Scholar 

  • Curtis PS, Drake BG, Whigham DF. 1989. Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated C02 in situ. Oecologia 78: 297–301.

    Google Scholar 

  • Drake BG, Leadley PW. 1991. Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2. Plant Cell Environ 14:853– 860.

    Article  Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA. 1992. The effect of nutrients and enriched C02 environments on production of carbon-based allelochemicals in Plantago: a test of the carbon/nutrient balance hypothesis. Am Nat 140: 707–723.

    Article  CAS  Google Scholar 

  • Field C, Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) The Economy of Plant Form and Function, pp. 25–56. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fog K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63: 433–462.

    Article  Google Scholar 

  • Friedli H. Lötscher H, Oeschger H, Siegenthaler U, Stauffcr B. 1986. Ice core record of l3C/l2C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237 - 238.

    Google Scholar 

  • Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169– 1194.

    Article  Google Scholar 

  • Heddle EM, Specht RL. 1975. Dark Island Heath (Ninety-mile Plain. South Australia). VIII The effect of fertilizers on composition and growth, 1950–1972. Aust J Bot 23:151–164.

    Google Scholar 

  • Horner JD, Gosz JR, Cates RG. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132:869– 883.

    Article  Google Scholar 

  • Hunt R. Hand DW. Hannah MA, Neal AM. 1991. Response to C02 enrichment in 27 herbaceous species. Func Ecol 5: 410–421.

    Article  Google Scholar 

  • Kimball BA. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75: 779–788.

    Article  Google Scholar 

  • Korner C, Arnone JA III. 1992. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675.

    Article  CAS  Google Scholar 

  • Kramer PJ, Kozlowski TT. 1979. Physiology of Woody Plants. Academic Press, New York.

    Google Scholar 

  • Larigauderie A, Hilbert DW, Occhcl WC. 1988. Effect of C02 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia 77: 544–549.

    Article  Google Scholar 

  • Maggs J, Pearson CJ. 1977. Litterfall and litter decay in coastal scrub at Sydney, Australia. Oecologia 31: 239–250.

    Article  Google Scholar 

  • Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

    Article  CAS  Google Scholar 

  • Mitchell DT, Coley PGF, Webb S, Allsopp N. 1986. Litterfall and decomposition processes in the Coastal Fvnbos vegetation. South-western Cape, South Africa. J Ecol 74: 977–993.

    Article  Google Scholar 

  • Mooney HA, Drake BG, Luxmoore RJ, Oechel WC, Pitelka LF. 1991. Predicting ecosystem responses to elevated C02 concentrations. Bio Science 41: 96–104.

    Google Scholar 

  • Morison JIL. 1990. Plant and ecosystem responses to increasing atmospheric C02. Trends Ecol Evol 5: 69–70.

    Article  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B. 1985. Evidence from polar ice cores for the increase in atmospheric C02 in the past two centuries. Nature 315:45– 47.

    Article  CAS  Google Scholar 

  • Norby RJ. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by C02 enrichment of the atmosphere. Physiol Plant 71:77– 82.

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG. 1989. Growth dynamics and water use of seedlings of Quercus alba L. in C02-enrichcd atmospheres. New Phytol 111: 491–500.

    Article  Google Scholar 

  • Norby RJ, O’Neill EG. 1991. Leaf area compensation and nutrient interactions in C02-enriched seedlings of vellow-poplar ( Liriodendron tulipifera L.). New Phytol 117: 515–528.

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG. Luxmoore RJ. 1986. Effect of atmospheric C02 enrichment on the growth and mineral nutrition of Quercus alba seedling in nutrient-poor soil. Plant Physiol 82:83–89.

    Article  CAS  Google Scholar 

  • Oberbauer SF, Sionit N, Hastings SJ, Oechel WC. 1986. Effects of C02, enrichment and nutrition on growth, photosynthesis, and nutrient concentration of Alaskan tundra plant species. Can J Bot 64:2993–2998.

    Article  CAS  Google Scholar 

  • Olson JS. 1963. Energy stroage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • O’Neill EG, Luxmoore RJ, Norby RJ. 1987. Elevated atmospheric C02 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations of Liriodendron tulipifera L. Plant Soil 104: 3–11.

    Article  Google Scholar 

  • Overdieck D. 1990. Effects of elevated C02-concentration levels on nutrient contents of herbaceous and woody plants. In: Greenhouse Effect and Primary Productivity in European Agro-ecosystems, pp. 31–37.

    Google Scholar 

  • Peñuelas J, Matamala R. 1990. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of C02 increase. J Exp Bot 41: 1119–1124.

    Article  Google Scholar 

  • Poorter H, Bergkotte M. 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ 15: 221–229.

    Article  CAS  Google Scholar 

  • Scaglia J, Lensi R, Chalamet A. 1985. Relationship between photosynthesis and denitrification in planted soil. Plant Soil 84: 37–43.

    Article  CAS  Google Scholar 

  • Schlesinger WH, Hasey MM. 1981. Decomposition of chaparral foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62: 762–774.

    Article  CAS  Google Scholar 

  • Sinclair TR. 1992. Mineral nutrition and plant growth response to climate change. J Exp Bot 43: 1141–1146.

    Article  CAS  Google Scholar 

  • Specht R. 1963. Dark Island Heath (Ninety-Mile Plain, South Australia). VII. The cffects of fertilizers on composition and growth, 1950–1960. Aust J Bot 11: 67–94.

    Article  Google Scholar 

  • Stock WD, Allsopp N. 1992. Functional perspective of ecosystems. In: Cowling RM (ed) The Ecology of Fynbos: Nutrients. Fire and Diversity. Oxford University Press, Cape Town.

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ. 1989. Nitrogen and lignin contcnt as predictors of litter decay rates: a microcosm test. Ecology 70:97–104.

    Article  Google Scholar 

  • Thomas RB, Strain BR. 1991. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol 96: 627–634.

    Article  CAS  Google Scholar 

  • Thomas RB. Richter DD. Ye H. Heine PR. Strain BR. 1991. Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium ( Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88: 415–421.

    Article  Google Scholar 

  • Tissue DT, Oechel WC. 1987. Response of Eriophorum vaginatum to elevated C02 and temperature in the Alaskan Tussock Tundra. Ecology 68: 401–410.

    Article  Google Scholar 

  • Williams WE, Garbutt K, Bazzaz FA. 1988. The response of plants to elevated C02—V. Performance of an assemblage of serpentine grassland herbs. Environ Exp Bot 28: 123–130.

    Article  Google Scholar 

  • Witkamp M. 1966. Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47: 194–201.

    Article  Google Scholar 

  • Witkowski ETF, Mitchell DT, Stock WD. 1990. Response of a Cape fynbos ecosystem to nutrient additions: shoot growth and nutrient contents of a pro- tcoid (Leucospermum parile) and an ericoid (Phylica cephalantha) evergreen shrub. Acta Oecol 11: 311–326.

    Google Scholar 

  • Wong SC. 1990. Elevated atmospheric partial pressure of C02 and plant growth. II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosyn Res 23: 171–180.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Stock, W.D., Midgley, G.F. (1995). Ecosystem Response to Elevated CO2: Nutrient Availability and Nutrient Cycling. In: Moreno, J.M., Oechel, W.C. (eds) Global Change and Mediterranean-Type Ecosystems. Ecological Studies, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4186-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4186-7_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8690-5

  • Online ISBN: 978-1-4612-4186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics