Skip to main content

Lead and Neuropsychological Function in Children: Progress and Problems in Establishing Brain-Behavior Relationships

  • Chapter
Advances in Child Neuropsychology

Part of the book series: Advances in Child Neuropsychology ((CHILDNEUROPSYCH,volume 3))

Abstract

Lead is a ubiquitous environmental pollutant whose contribution to the pathogenesis of numerous human diseases has long been recognized, albeit not completely understood (NRC, 1993). Surprisingly, knowledge about lead’s devastating influence on the developing central nervous system dates only from the end of the nineteenth century (Gibson, Love, Hardine, Bancroft, & Turner, 1892). In their case series, a benchmark investigation in this literature, Byers and Lord (1943) demonstrated that lead poisoning need not progress to frank encephalopathy (i.e., cerebral edema and hemorrhage) for children to experience severe intellectual and behavioral sequelae. This discovery spawned worry over “low-level” or subclinical lead exposures, those within the range of exposures that may be incurred by residence in a modern industrial setting but not high enough to produce classic symptoms of lead poisoning. The hypothesis that such exposures impair children’s mental function has been a topic of spirited, often acrimonious debate since the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achenbach, T„ Howell. C.. Aoki. M.. & Rauh. V. (1993). Nine-year outcome of the Vermont Intervention Program for low birth weight infants. Pediatrics, 91, 45–55.

    PubMed  Google Scholar 

  • Alkondon M.. Costa. A.. Radhakrishnan. V., Aronstam, R., & Albuquerque, F.. (1990). Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead. FEBS Leiten. 261. 124–130.

    Article  Google Scholar 

  • American Academy of Pediatrics Committee on Environmental Health. (1993). Uad poisoning: From screening to primary prevention. Pediatrics, 92. 176–183.

    Google Scholar 

  • Annest, J., Pirkle. J., Makuc. D.. Neese. J.. Bayse. D.. & Kovar. M. (1983). Chronological trend in blood lead levels between 1986 and 1980. New England Journal of Medicine, 308, 1373–1377.

    Article  Google Scholar 

  • Audesirk. G. (1985). Effects of lead exposure on the physiology of neurons. Progress in Neurobiology, 24. 199–231.

    Article  PubMed  Google Scholar 

  • Aylward, G (1992). The relationship between environmental risk and developmental outcome. Journal of Developmental and Behavioral Pediatrics. 13. 222–229.

    Google Scholar 

  • Aylward. G. (1993). Perinatal asphyxia: Effects of biologic and environmental risks. Clinks in Perinatology, 20, 433–449. Bellinger

    Google Scholar 

  • Baghurst. P.. McMichacl. A., Wigg. N.. Vimpani, G.. Robertson. E.. Roberts. R.. & Tong. S-L. (1992). Environmental exposure to lead and children’s intelligence at the age of seven years. New England Journal of Medicine. 327, 1279–1284.

    Article  Google Scholar 

  • Bellinger, D., Needleman, H.. Bromfield. R.. & Mintz. M. (1984). A follow-up study of the academic attainment and classroom behavior of children with elevated dentine lead levels. Biological Trace Element Research. 6. 207–223.

    Article  Google Scholar 

  • Bellinger. D.. Needleman. H., Levitón. A.. Waternaux, C.. Rabinowitz. M., & Nichols, M. (1984). Early sensory-motor development and prenatal exposure to lead. Neurobehavioral Toxicology and Teratology. 6, 387–402.

    Google Scholar 

  • Bellinger, D., Levitón, A.. Waternaux, C., A Allred, F.. (1985). Methodological issues in modeling the relationship between low-level lead exposure and infant development: Examples from the Boston Lead Study. Environmental Research. 38, 119–129.

    Google Scholar 

  • Bellinger. D.. Levitón. A.. Needleman. H.. Waternaux. C. & Rabinowitz. M. (1986). low-level lead exposure and infant development in the first year. Neurobehavioral Toxicology and Teratology. 8, 151–161.

    Google Scholar 

  • Bellinger. D.. Levitón. A.. Rabinowitz. M.. Needleman. H. & Watcmaux. C. (1986). Correlate of low-level lead exposure in urban children at two years of age. Pediatrics. 77. 826–833.

    Google Scholar 

  • Bellinger, D., Levitón, A., Waternaux, C.. Needleman, H., & Rabinowitz, M. (1987). Longitudinal analyses of pre- and postnatal lead exposure and early cognitive development. New England Journal of Medicine, 316. 1037–1043.

    Google Scholar 

  • Bellinger. D.. Levitón. A.. Waternaux. C.. Needleman, H.. & Rabinowitz. M. (1988). Low-level lead exposure, social class, and infant development. Neu-rotoxicology and Teratology. 10. 497–503.

    Google Scholar 

  • Bellinger, D., Levitón, A.. & Waternaux, C. (1989). lead, 10. and social class. International Journal of Epidemiology. 18. 180–185.

    Google Scholar 

  • Bellinger. D., Levitón, A., Waternaux, C, Needleman, II-, A Rabinowitz, M. (1989). Low-level lead exposure and early development in socioeconomically advantaged urban infants. In M. Smith. L. Grant. & A. Sons (Eds.). Lead Exposure and Child Development: An International Assessment (pp. 345–356 ). Dordreeht: Kluwer Academic Publishers

    Google Scholar 

  • Bellinger. D.. Levitón. A.. & Sloman. J. (1990). Antecedents and correlates of improved cognitive performance in children exposed in utero to low levels of lead. Environmental Health Perspectives. 89. 5–11.

    Article  PubMed  Google Scholar 

  • Bellinger. D., Sloman, J., Levitón, A., Rabinowitz. M.. Needleman, H.. & Waternaux. C. (1991). Low-level lead exposure and children’s cognitive function in the preschool years. Pediatría, 87, 219–227.

    Google Scholar 

  • Bellinger, D.. & Needleman, H (1992). Neurodevelopmental effects of low-level lead exposure in children. In H. Needleman (Ed.). Human lead Exposure (pp. 191–208 ). Boca Raton: CRC Press.

    Google Scholar 

  • Bellinger, D., Stiles, K„ and Needleman. H. (1992). Low-level lead exposure, intelligence, and academic achievement: A long-term follow-up study. Pediatrics. 90, 855–861.

    Google Scholar 

  • Bellinger. D., & Stiles. K. (1993). Epidemiologic approaches to assessing the developmental neurotoxicity of lead. NeuroToxicotogy, 14. 151–160.

    Google Scholar 

  • Bellinger. D., & Stiles. K. (1993). Epidemiologic approaches to assessing the developmental neurotoxicity of lead. NeuroToxicotogy, 14. 151–160.

    Google Scholar 

  • Bellinger. D., Hu. H., Titlebaum. L.. & Needleman. H. (1992). Attentional correlates of dentin and bone lead levels in adolescents Archives of Environmental Health, 49, 98–105.

    Google Scholar 

  • Ben-Ari. Y.. Aniksztejn, L.. & Bregestovski. P. (1992). Protein kinase C modulation of NMD A currents: An important link for LTP induction. Trends in Neuroscience, 15, 333–339.

    Google Scholar 

  • Bergomi, M., Borclla, P.. Fantuzzi. G.. Vivoli. G.. Sturloni. N.. Cavazzuti. G.. Tampieri. A., & Tartoni. P. (1989). Relationship between lead exposure indicators and neuropsychological performance in children. Developmental Medicine and Child Neurology. 31, 181–190.

    Google Scholar 

  • Birnbaum, L. (1993). Pharmacokinetic of PCBs. In U.S. Environmental Protection Agency. Workshop Report on Developmental Neurotoxic Effects Associated with Exposure to PCBs (pp. 2–7 to 2–10). EPA/63O/R-920O4.

    Google Scholar 

  • Bondy, S. (1989). Intracellular calcium and neurotoxic events. Neurotoxicology and Teratology. II. 527–531.

    Google Scholar 

  • Burbacher, T.. Rodier, P., & Weiss. B. (1990). Methylmercury development! neurotoxicity: A comparison of effects in humans and animals. Neurotoxicology and Teratology. 12, 191–202.

    Google Scholar 

  • Bushnell. P.. Shelton. S.. & Bowman. R. (1979). Elevation of blood lead concentration by confinement in the rhesus monkey. Bulletin of Environmental Contamination and Toxicology. 22. 819–826.

    Article  PubMed  Google Scholar 

  • Byers, R., & Lord, E. (1943). Late effects of lead poisoning on mental development. American Journal of Diseases of Children. 66. 471–494.

    Google Scholar 

  • Centers for Disease Control. (1981). Toxic-shock syndrome—United States. 1970–1980. Morbidity and Mortality Weekly Report, 30, 25–28.

    Google Scholar 

  • Centers for Disease Control. (1991). Preventing Lead Poisoning in Young Children: A Statement by the Centers for Disease Control. U.S. Department of Health and Human Services.

    Google Scholar 

  • Cookman. G., King. W.. & Regan. C. (1987). Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. Journal of Neurochemistry, 49. 399–403.

    Article  PubMed  Google Scholar 

  • Cookman. G.. Hemmens. S., Keane, G., King, W., k Regan. C. (1988). Chronic low level-lead exposure precociously induces rat glial development in vitro and in vivo. Neuroscience Letters. 86. 33–37.

    Article  Google Scholar 

  • Cooney. G., Bell. A., McBride, W.. & Carter, C. (1989a). Low-level exposures to lead: The Sydney Lead Study. Developmental Medicine and Child Neurology, 31. 640–619.

    Google Scholar 

  • Cooney, G„ Bell, A.. McBride. W.. & Carter, C. (1989b). Neurobehavioral consequences of prenatal low level exposure to lead. Neurotoxicology and Teratology, 11, 95–104.

    Google Scholar 

  • Cory-Slechta, D (1990). Exposure duration modifies the effects of low level lead on fixed-interval performance. Neuro Toxicology, II. 427–442.

    Google Scholar 

  • Davies. J. (1990). Neurotoxic concerns of human pesticide exposures. American Journal of Industrial Medicine. IS. 327–331.

    Google Scholar 

  • Dietrich. K.. Krafft, K., Bornsetiein, R.. Hammond, P., Berger, O., Succop. P.. & Bier. M. (1987). Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics, 80, 721–730.

    Google Scholar 

  • Dietrich. K.. Succop. P.. Bornschein. R., Krafft. K.. Berger. O.. Hammond. P., & Buncher, R. (1990). Lead exposure and neurobehavioral development in later infancy. Environmental Health Perspectives. 89. 13–19.

    Google Scholar 

  • Dietrich. K.. Succop. P., Berger, O., Hammond, P., & Bornschein. R. (1991). Lead exposure and the cognitive development of urban preschool children: The Cincinnati Lead Study cohort at age 4 years. Neurotoxicology and Teratology, 13, 203–211.

    Google Scholar 

  • Dietrich. K. Succop, P.. Berger, O. & Keith, R. (1992). Lead exposure and the central auditory processing abilities and cognitive development of urban children: The Cincinnati Lead Study cohort at age 5 years. Neurotoxicology and Teratology, 14, 51–56.

    Google Scholar 

  • Dietrich. K.. Berger. O.. & Succop. P (1993a). Lead exposure and the motor developmental status of urban six-year-old children in the Cincinnati Prospective Study. Pediatrics. 91. 301–307.

    Google Scholar 

  • Dietrich. K.. Bcrgcr. O.. Succop. P.. & Hammond. P. (1993b). The developmental consequences of low to moderate prenatal and postnatal lead exposure: Intellectual attainment in the Cincinnati Lead Study cohort following school entry. Neurotoxicology and Teratology, IS. 37–44.

    Google Scholar 

  • Dietrich, K., & Bellinger, D. (1994). Assessment of neurobehavioral development in studies of the effects of fetal exposures to environmental agents. In H. Needleman & D. Bellinger (Eds.), Prenatal Exposure to Environmental Toxicants: Developmental Consequences (pp. 57–85 ). Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Dolinsky. Z.. Burright. R, Donovick, P., Glickman, L., Babish, J., Summers, B., & Cvpess, R. (1981). Behavioral effects of lead and toxocara canis in mice. Science. 213. 1142–1144.

    Google Scholar 

  • Ernhart, C, Landa, B., & Schell, N. (1981). Subclinical levels of lead and developmental deficit: A multivariate follow-up reassessment. Pediatrics. 67, 911–919.

    Google Scholar 

  • Ernhart, C, Morrow-Tlucak, M.. Matter. M., & Wolf. A. (1987). Low-level lead exposure in the prenatal and early preschool periods: Early preschool development. Neurotoxicology and Teratology, 9. 259–270.

    Google Scholar 

  • Ernhart, C., Morrow-Tlucak. M., Wolf. A., Super. D.. & Drotar. D. (1989). Low-level lead exposure in the prenatal and early postnatal periods: Intelligence prior to school entry. Neurotoxicology and Teratology. 11. 161–170.

    Google Scholar 

  • Faust, D., & Brown, J. (1987). Moderately elevated blood lead levels: Effects on neuropsychologic functioning in children. Pediatrics, W. 623–629.

    Google Scholar 

  • Fergusson. D., Fergusson. J.. Horwood, L., & Kinzett, N. (1988). A longitudinal study of dentine lead levels, intelligence, school performance, and behavior: Part II: Dentine lead and cognitive ability. Journal of Child Psychology and Psychiatry, 29. 793–809.

    Google Scholar 

  • Flegal, R.. & Smith. D. (1992). Lead level in preindustrial humans New England Journal of Medicine. 326. 1293–1294.

    Google Scholar 

  • Gibson. J.. Love, W„ Hardine, D.. Bancroft. P.. A: Turner, A. (1892). Note on lead poisoning as observed among children in Brisbane. In L. Huxtable (Ed.), Transactions of the Third Intercolonial Medical Congress of Australia (pp. 76–83). Sydney: Charles Potter.

    Google Scholar 

  • Goering, P., Mistry, P.. & Fowler, B. (1986). A low molecular weight lead- binding protein in brain attenuates lead inhibition of δ-aminolevulinic acid dehydratase: Companion with a renal lead-binding protein. Journal of Pharmacology and Experimental Therapeutics, 237, 220–225.

    Google Scholar 

  • Golden, M., & Birns, B. (1983). Social class and infant intelligence. In M. Lewis (Ed.). Origins of Intelligence: Infancy and Early Childhood, 2nd Ed. (pp. 347–398 ). New York: Plenum Press.

    Google Scholar 

  • Goldstein, G. (1990). lead poisoning and brain cell function. Environmental Health Perspectives. 89. 91–94.

    Google Scholar 

  • Goldstein, G. (1992). Developmental neurobiology of lead toxicity. In H. Needleman (Ed.), Human Lead Exposure (pp. 125–135 ). Boca Raton. FL: CRC Press.

    Google Scholar 

  • Goldstein. G.. Asbury. A., & Diamond, I. (1974). Pathogenesis of lead encephalopathy: Uptake of lead and reaction of brain capillaries. Archives of Neurology. 31. 382–389.

    Google Scholar 

  • Grandjean, P. (1988). Ancient skeletons as silent witnesses of lead exposures in the past. CRC Critical Review in Toxicology. 19. 11–21.

    Article  Google Scholar 

  • Hansen, O., Trillingsgaard. A.. Beese. I.. Lyngbye. T.. & Grandjean. P. (1989). A neuropsychological study of children with elevated dentine lead level: Assessment of the effect of lead in different socio-economic groups. Neurotoxicology and Teratology. 11. 205–213.

    Google Scholar 

  • Harvey. P.. Hamlin, M., Kumar. R., & Delves. T. (1984). Blood lead, behavior, and intelligence test performance in pre-school children. Science of the Total Environment. 40. 45–60.

    Google Scholar 

  • Hatzakis, A., Kokkevi, A.. Maravelias. C., Katsouyanni. K.. Salaminios. F.. Kalandidi. A.. Koutselinis. A., Stefanis, C., & Trichopoulos, D. (1989). Psychometric intelligence deficits in lead-exposed children. In M. Smith. L. Grant. & A. Sors (Eds.), Lead Exposure and Child Development: An International Assessment (pp. 211–223 ). Dordrecht. Netherlands: Kluwer Academic.

    Google Scholar 

  • Hill. A. (1953). Observation and experiment. New England Journal of Medicine. 248, 995–1001.

    Google Scholar 

  • Hunter, J., Urbanowicz, M-A., Yule, W.,and Lansdown, R. (1985). Automated testing of reaction time and its association with lead in child. International Archives of Occupational and Environmental Health,5727-34.

    Google Scholar 

  • Kennedy, M. (1989). Regulation of neuronal function by calcium. Trends in Neurosciences. 12. 417–420.

    Article  PubMed  Google Scholar 

  • Kilburn. K. (1989). Is the human nervous system most sensitive to environmental toxins? Archives of Environmental Health. 44. 343–344.

    Google Scholar 

  • Langmuir. A. (1982). Toxic-shock syndrome: An epidemiologist’s view. Journal of Infectious Diseases. 145. 588–591.

    Google Scholar 

  • Lansdown. R.. Yule, W.. Urbanowicz, M-A., & Hunter, J. (1986). The relationship between blood-lead concentrations, intelligence, attainment and behavior in a school population: The second London study. International Archives of Occupational and Environmental Health, 57, 225–235.

    Google Scholar 

  • Leviton, A., Bellinger. D.. Allred. E.. Rabinowitz, M.. Needleman. IL. & Schoenbaum, S. (1993). Pre- and postnatal low level lead exposure and children’s dysfunction in school. Environmental Research. 60. 30–43.

    Google Scholar 

  • MacPhail, R. (1990). Environmental modulation of neurobehavioral toxicity. In R Russell, P. Flat tau, & A. Pope (Eds.). Behavioral Measures of Neurotoxicity (pp. 347–358 ). Washington. DC. National Academy Press.

    Google Scholar 

  • Mahaffey, K., Annest, J., Roberts. J., & Murphy. R. (1982). National estimates of blood lead levels: United States 1976–1980. New England Journal of Medicine. 307. 573–579.

    Google Scholar 

  • Marcus, A. (1985). Testing alternative nonlinear kinetic models in compartmental analysis. In J. Eisenfeld & C. Delisi (lids), Mathematics and Computer in Biomedical Applications (pp. 259–267 ). Amsterdam: Elsevier.

    Google Scholar 

  • Marecek, J., Shapiro, I., Burke. A.. Katz. S.. & Hediger. M. (1983). Low-level lead exposure in childhood influences neuropsychological performance. Archives of Environmental Health. 38. 355–359.

    Google Scholar 

  • Markovac, J.. & Goldstein, G. (1988). Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 334, 71–73.

    Article  PubMed  Google Scholar 

  • McCauley, P., Bull. R., Tonti. A.. Lutkenhoff. S„ Meister. M.. Doerger. J., & Stober. J. (1982). The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. Journal of Toxicology and Environmental Health. 10. 639–651.

    Article  PubMed  Google Scholar 

  • Mclntire, M.. & Angle, C. (1972). Air lead. Relation to lead in blood of Black school children deficient in glucose-6-phosphate dehydrogenase. Science, 177, 520–522.

    Article  Google Scholar 

  • McMichael. A.. Baghurst. P.. Wigg. N.. Vimpani. G.. Robertson. E.. & Roberts. R. (1988). Port Pine Cohort Study: Environmental exposure to lead and children’s abilities at the age of four years. New England Journal of Medicine, 319. 468–475.

    Google Scholar 

  • Mills, P., Abbey. D.. Beeson. W.. & Peterson. F. (1991). Ambient air pollution and cancer in California Seventh-Day Adventists. Archives of Environmental Health, 46. 271–280.

    Google Scholar 

  • Mirsky. A., Anthony. B.. Duncan, C.. Ahearn, M., & Kellam, S. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review. 2. 109–145.

    Google Scholar 

  • Mushak. P. (1993). New directions in the toxicokinetics of human lead exposure. Neurotoxicology, 14. 29–44.

    PubMed  Google Scholar 

  • Nation. J., Grover, C., Bratton, G.. & Salinas. J. (1990). Behavioral antagonism between lead and cadmium Neurotoxicologv and Teratology, 12. 99–104.

    Google Scholar 

  • National Research Council. (1993). Measuring Lead Exposure in Infants. Children, and Other Sensitive Populations. Washington, DC: National Academy Press.

    Google Scholar 

  • Needleman. H., Gunnoe, C., Levitón. A.. Reed. R.. Peresie, II.. Maher, C., & Barrett. P. (1979). Deficits in psychologic and classroom performance of children with elevated dentine lead levels..View England Journal of Medicine. 300. 689–695.

    Google Scholar 

  • Needleman, H.. & Gatsonis, C. (1990). Low-level lead exposure and the 10 of children. Journal of the American Medical Association. 263. 673–678.

    Article  PubMed  Google Scholar 

  • Needleman. H., Schell, A., Bellinger. D.. Levitón. A.. & Allred. E. (1990). Long term effects of childhood exposure to lead at low dose: An eleven-year follow-up report. New England Journal of Medicine. 322, 83–88.

    Google Scholar 

  • Needleman. H.. & Bellinger. D. (1991). Childhood lead toxicity. Annual Review of Public Health, 12, 111–140.

    Google Scholar 

  • Nelson. B. (1991). Selecting exposure parameters in developmental neurotoxicity assessments. Neurotoxicology and Teratology. 13, 569–573.

    Google Scholar 

  • Nordberg. G.. Mahaffey, K., & Fowler. B. (1991). Introduction and summary. International workshop on lead in bone: Implications for dosimetry and toxicology. Environmental Health Perspectives, 91, 3–7.

    Google Scholar 

  • O’Leary. D. (1987). Remodelling of early axonal projections through the selective elimination of neurons and long axon collaterals. In CIBA Foundation Symposium No. 126. Selective Neuronal Death (pp. 113–130 ). New York: John Wiley & Sons.

    Google Scholar 

  • Oppenheim. R. (1991). Cell death during development of the nervous system. Annual Review of Neuroscience. 14. 453–501.

    Article  PubMed  Google Scholar 

  • Pounds. J.. & Rosen. J. (1988). Cellular Ca2+ homeostasis and Ca2+- mediated cell processes as critical targets for toxicant action: Conceptual and methodological pitfalls. Toxicology and Applied Pharmacology, 94. 331–341.

    Google Scholar 

  • Pocock, S., Ashby. D., & Smith, M. (1987). Lead exposure and children’s intellectual performance. International Journal of Epidemiology. 16, 57–67.

    Google Scholar 

  • Raab. G.. Thomson. G.. Boyd. L.. Fulton. M.. & Laxen. D. (1990). Blood lead levels, reaction time, inspection time and ability in Edinburgh. Scotland, UK, children. British Journal of Developmental Psychology. 8. 101–118.

    Google Scholar 

  • Rabinowitz, M. and Needleman. H. (1982). Temporal trends in the lead concentrations of umbilical cord blood. Science. 216. 1429–1431.

    Article  PubMed  Google Scholar 

  • Regan. C. (1989). Lead-impaired neurodevelopment. Mechanisms and threshold values in the rodent. Neurotoxicology and Teratology, 11. 533–537.

    Google Scholar 

  • Rice, D (1992a). Behavioral impairment produced by developmental lead exposure: Evidence from primate research. In H. Needleman (Ed.). Human Lead Exposure (pp. 137–152 ). Boca Raton, Fl.: CRC Press.

    Google Scholar 

  • Rice, D. (1992b). Lead exposure during different developmental periods produces different effects on FI performance in monkeys tested as juveniles and adults. NeuroToxicology, 13. 757–770.

    Google Scholar 

  • Rice. D. (1992c). Behavioral effects of lead in monkeys tested during infancy and adulthood. Neurotoxicology and Teratology, 14, 235–245.

    Google Scholar 

  • Rogan, W„ Gladen, B., Hung, K.. Koong, S-L., Shih. L-Y., Taylor, J., Wu, Y-C.. Yang. D.. Ragan. B.. & Hsu. C-C. (1988). Congenital poisoning by polvchlorinated biphenyls and their contaminants in Taiwan. Science. 241, 334–336.

    Google Scholar 

  • Rosen. J. (1988) The toxicological importance of lead in bone: The evolution and potential uses of bone lead measurements by X-ray (fluorescence to evaluate treatment outcomes in moderately lead toxic children. In T. CI ark son, L. Friberg, G. Nordberg. & P. Sager (Eds.). Biological Monitoring of Toxic Metals (pp. 603–621 ). New York: Plenum Publishing.

    Google Scholar 

  • Rothenberg. S.. Lourdes. C.. Cansino-Ortiz, S.. Perroni-Hernandez, E., de la Torre. P.. Neri-Mendez. C. Ortega. P.. Hidalgo-Loperena. H.. & Svensgaard, I). (1989). Neurobehavioral déficits after low level lead exposure in neonates: The Mexico City Pilot Study. Neurotoxicology and Teratology. I I. 85–93.

    Google Scholar 

  • Rothman. K.. & Poole. C. (1988). A strengthening programme for weak associations. International Journal of Epidemiology, 319. 955–959.

    Google Scholar 

  • Russell. R., Flattau. P.. & Pope. A. (Eds.) (1990). Behavioral Measures of Neurotoxicity. Washington. DC: National Academy Press.

    Google Scholar 

  • Schubert. D. (1991). The possible role of adhesion in synaptic modification. Trends in Neurosctences, 14, 127–130.

    Google Scholar 

  • Schwartz, J. (1994). Low level lead exposure and children’s IQ: A meta analysis and search for a threshold. Environmental Research, 65. 42–55.

    Google Scholar 

  • Shaheen, S. (1984). Neuromaturation and behavior development: The case of childhood lead poisoning. Developmental Psychology. 20. 542–550.

    Google Scholar 

  • Shapiro. I.. & Marecek. J. (1984). Dentine lead concentration as a predictor of neuropsychological functioning in inner-city children. Biological Trace Element Research. 6. 69–78.

    Google Scholar 

  • Silbergeld, E. (1991). Lead in bone: Implication«, for toxicology during pregnancy and lactation. Environmental Health Perspectives, 91. 63-70.

    Google Scholar 

  • Silbergeld. E. (1992a). Neurological perspective on lead toxicity. In II. Need- leman (Ed.). Human Lead Exposure (pp. 89–103 ). Boca Raton. FL: CRC Press.

    Google Scholar 

  • Silbergeld. E. (1992b). Mechanisms of lead neurotoxicity, or looking beyond the lamppost. FASF.B Journal. 6. 3201–3206.

    Google Scholar 

  • Silva. P.. Hughes. P.. Williams. S.. & Faed. W (1988). Blood lead, intelligence, reading attainment, and behavior in eleven year old children in Dunedin. New Zealand. Journal of Child Psychology and Psychiatry, 29, 43–52.

    Google Scholar 

  • Smith, M., Delves, T., Lansdown. R. Clayton. B.. & Graham, P. (1983). The effects of lead exposure on urban children: The Institute of Child Health/Southampton study. Developmental Medicine and Child Neurology, 25 (Suppl. 47). 1–47.

    Google Scholar 

  • Smith, M L., Kates, M., & Vriezen, E. (1993). The development of frontal-lobe functions. In S. Segalowitz & I. Rapin (Eds.). Handbook of Neuropsychology, Vol. 7 Child Neuropsychology (pp. 309–330 ). New York: Elsevier.

    Google Scholar 

  • Stark, M., Wolff, J., Sc. Korbmacher. A. (1992). Modulation of glial cell differentiation by exposure to lead and cadmium. Neurotoxicology and Teratology, 14. 247–252.

    Google Scholar 

  • Stiles. K., & Bellinger. D. (1993). Neuropsychological correlates of low-level lead exposure in children: A prospective study. Neurotoxicology and Teratology. 15, 27–35.

    Google Scholar 

  • Sullivan. L. (1991). Luncheon remarks. Presented at Preventing Childhood Lead Poisoning- The First Comprehensive National Conference, Washington, DC. October 7, 1991.

    Google Scholar 

  • Sundstrom, R.. Muntzing, K., Kalimo, H., & Sourander, P. (1985). Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy. Acta Neuropathology. 68, 1–9.

    Google Scholar 

  • Thacker S Hoffman D„ Smith J Steinberg K Zack M (1992)Effect of low-level body burdens of lead on the mental development of children: Limitations of meta-analysis in a review of longitudinal data. Archives of Environmental Health, 47. 336–346.

    Article  PubMed  Google Scholar 

  • Tiffany-Castiglioni E Sierra E Wu J-N. Rowles T (1989). Lead toxicity in neuroglia. NeuroToxtcology, 10. 417–444.

    Google Scholar 

  • Tilson H Jacobson J Rogan. W (1990)Polychlorinated biphenyl and the developing nervous system: Cross-species comparisons. Neurotoxicology and Teratology, 12, 239–248.

    Article  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency. (1986a). Air Quality Criteria for lead. EPA-600/8-83/028aF-dF. Environmental Criteria and Assessment Office. Research Triangle Park, NC 27711.

    Google Scholar 

  • U.S. Environmental Protection Agency (1986b). Reducing Lead in Drinking Water: A Benefit Analysis. EPA-230-09-86-019. Washington. DC: Office of Policy Planning and Evaluation.

    Google Scholar 

  • U.S. Environmental Protection Agency. (1990). Air Quality Criteria for lead: Supplement to the 1986 Addendum. EPA-600/08-89/049f. Research Triangle Park. NC. 1990.

    Google Scholar 

  • Wasserman G GrazianoJFador-LitvakPPopovacDMorinaNMusabegovicAVreneziNCapuni-ParackaSLekicVPreteni-RedjepiEHadzialjevicSSlavkovichVKlineJShroutPSteinZ (1992)Independent effects of lead exposure and iron deficiency anemia on developmental outcome at age 2 year.. Journal of Pediatrics, 121, 695703.

    Article  PubMed  Google Scholar 

  • Weiss B (1985). Intersections of psychiatry and toxicology. International Journal of Mental Health, 14, 7–25.

    Google Scholar 

  • Weiss B (1988). Quantitative perspectives on behavioral toxicology. Toxicology Letters, 43, 285–293.

    Article  PubMed  Google Scholar 

  • Wetmur J Lehnert G Desnick R (1991). The delta-aminolevulinic dehydratase polymorphism: Higher Wood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes.Environmental Research. 56. 109–119.

    Article  PubMed  Google Scholar 

  • Wigg N Vimpani G McMichael A Baghurst P Robertson E„ Roberts R (1988). Poit Pirie Cohort Study: Childhood Wood lead and neuropsychological development at age 2 years. Journal of Epidemiology and Community Health. 42. 213–219.

    Article  PubMed  Google Scholar 

  • Winneke G Kramer U Brockhaus A Ewers U Kujanek G Lechner H Janke W (1983)Neuropsychological studies in children with elevated tooth-lead concentrations II. Extended Study. International Archives of Occupational and Environmental Health. 51. 231–252.

    Article  PubMed  Google Scholar 

  • Winneke G Kramer U (1984). Neuropsychological effects of lead in children: Interaction with social background variables. Neuropsychobiology. 11, 195–202.

    Article  PubMed  Google Scholar 

  • Winneke G Beginn U Ewert T Havestadt C Kraemer U Krause C Thron H Wagner H (1985)Comparing the effects of perinatal and later childhood lead exposure on neuropsychological outcome. Environmental Research, 38, 155–167.

    Article  PubMed  Google Scholar 

  • Winneke G Brockhaus A Collet W Kramer U (1989). Modulation of lead-induced performance deficit in children by varying signal rate in a serial choice reaction task. Neurotoxicology and Teratology. 11. 587–592.

    Google Scholar 

  • Winneke G Brockhaus A Ewers U Kramer U Neuf M (1990). Results from the European Multicenter study on lead neurotoxicity in children: Implications for risk assessment. Neurotoxicology and Teratology, 12, 553–559.

    Article  PubMed  Google Scholar 

  • World Health Organization. (in press). IPCS Environmental Health Criteria for Inorganic Lead.

    Google Scholar 

  • Yule W Lansdown R Millar I Urbanowicz M-A (1981). The relationship between blood lead concentrations, intelligence, and attainment in a school population: A pilot study. Developmental Medicine and Child Neurology. 23, 567–576.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bellinger, D. (1995). Lead and Neuropsychological Function in Children: Progress and Problems in Establishing Brain-Behavior Relationships. In: Tramontana, M.G., Hooper, S.R. (eds) Advances in Child Neuropsychology. Advances in Child Neuropsychology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4178-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4178-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8687-5

  • Online ISBN: 978-1-4612-4178-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics