Three-Dimensional In Vitro Assay of Endothelial Cell Invasion and Capillary Tube Morphogenesis

  • Roberto Montesano
  • Michael S. Pepper
Chapter
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)

Abstract

The establishment and maintenance of a vascular supply is an absolute requirement for the growth of normal and neoplastic tissues and, as might be expected, the cardiovascular system is the first organ system to develop and to become functional during embryogenesis. Both during development and in postnatal life, all blood vessel begin as simple endothelial-lined capillaries. Although some remain as capillaries, many of these newly-formed vessels develop into larger vessels through the concentric addition of smooth muscle cells and fibroblasts. Capillary blood vessels are formed by two processes: (a) vasculogenesis, in which a primary capillary plexus is formed from endothelial cells which differentiate in situ from mesodermal precursors, and (b) angiogenesis, the formation of new capillary blood vessels by a process of sprouting from preexisting vessels (Risau et al., 1988; Pardenaud et al., 1989). While both processes are required for formation of the vascular system during embryonic development, neovascularization which occurs in postnatal life is attributed to angiogenesis. In adult tissues, capillary proliferation is tightly controlled, and occurs in female reproductive organs (e.g., in the corpus luteum and regenerating endometrium), in the placenta and mammary gland during pregnancy, during exercise-induced muscle hypertrophy, in the wound healing process and in response to tissue hypoxia associated with vessel occlusion. Angiogenesis may however be detrimental to the organism. This occurs in pathological conditions such as proliferative retinopathy and juvenile hemangioma. Angiogenesis is also necessary for the continued growth of solid tumors, and allows for the hematogenous dissemination of tumor cells and the formation of metastases (reviewed by Folkman and Shing, 1992; Rak et al., 1993; Fidler and Ellis, 1994; Folkman, 1995a).

Keywords

Migration Foam Vanadate Polypeptide Flavonoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander C.A., Werb Z. (1991): Extracellular matrix degradation. In: Cell Biology of Extracellular Matrix, 2nd ed. Hay E.D., ed., New York: Plenum Press, pp. 255–302.CrossRefGoogle Scholar
  2. Alexander H.R., Billingsley K.G., Block M.I., Fraker D.L. (1994): D-factor/leukemia inhibitory factor: evidence for its role as a mediator in acute and chronic inflammatory disease. Cytokine 6:589–596.PubMedCrossRefGoogle Scholar
  3. Anand-Apte B., Pepper M.S., Bao L., Smith R.C., Voest E., Iwata K., Montesano R., Olsen B., Murphy G., Apte S.S., Zetter B. (1997): Inhibition of angiogenesis and tumor growth by tissue inhibitor of metalloproteinase-3 (TIMP-3), a matrix bound TIMP. Invest Ophtalmol Vis Sci 38:817–823.Google Scholar
  4. Andrade S.P., Fan T-P.D., Lewis G.P. (1987): Quantitative in vivo studies on angiogenesis in a rat sponge model. Br J Exp Path 68:755–766.Google Scholar
  5. Aruffo A., Stamenkovic I., Mulnick M., Underhill C.B., Seed B. (1990): CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313.PubMedCrossRefGoogle Scholar
  6. Asahara T., Bauters C., Zheng L.P., Takeshita S., Bunting S., Ferrara N., Symes J.F., Isner J-M. (1995): Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92 (Suppl II):II-365-II-371.Google Scholar
  7. Ausprunk D.H. (1986): Distribution of hyaluronic acid and sulfated glycosaminoglycans during blood-vessel development in the chick chorioallantoic membrane. Am J Anat 177: 313–331.PubMedCrossRefGoogle Scholar
  8. Ausprunk D.H., Folkman J. (1977): Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during angiogenesis. Microvasc Res 14:53–65.PubMedCrossRefGoogle Scholar
  9. Ausprunk D.H., Boudreau C.L., Nelson D.A. (1981): Proteoglycans in the microvasculature. II. Histochemical localization in proliferating capillaries of the rabbit cornea. Am J Pathol 103:367–375.PubMedGoogle Scholar
  10. Baird A., Durkin T. (1986): Inhibition of endothelial cell proliferation by type β-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun 138:476–182.PubMedCrossRefGoogle Scholar
  11. Baird A., Klagsbrun M. (1991): The fibroblast growth factor family. Cancer Cells 3:239–243.PubMedGoogle Scholar
  12. Banerjee S.D., Toole B.P. (1991): Monoclonal antibody to chick embryo hyaluronan-binding protein: changes in distribution of binding during early brain development. Dev Biol 146: 186–197.PubMedCrossRefGoogle Scholar
  13. Banerjee S.D., Toole B.P. (1992): Hyaluronan-binding protein in endothelial cell morphogenesis. J Cell Biol 119:643–652.PubMedCrossRefGoogle Scholar
  14. Basilico C., Moscatelli D. (1992): The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165.PubMedCrossRefGoogle Scholar
  15. Battegay E., Rupp J., Iruela-Arispe L., Sage E.H., Pech M. (1994): PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGFβ-receptors. J Cell Biol 125:917–928.PubMedCrossRefGoogle Scholar
  16. Bautch V.L., Toda S., Hassell J.A., Hanahan D. (1987): Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–538.PubMedCrossRefGoogle Scholar
  17. Bertrand P., Girard N., Delpech B., Duval C., D’Anjour J., Dance J.P. (1992): Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas. Int J Cancer 52:1–6.PubMedCrossRefGoogle Scholar
  18. Boudreau N., Turley E.A., Rabinovitch M. (1991): Fibronectin, hyaluronan and hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol 143:235–247.PubMedCrossRefGoogle Scholar
  19. Bourguignon L.Y.W., Lokeshwar V.B., He J., Chen X., Bourguignon G.J. (1992): A CD44-like endothelial cell transmembrane glycoprotein (GP 116) interacts with extracellular matrix and ankyrin. Mol Cell Biol 12:4464–1471.PubMedGoogle Scholar
  20. Breier G., Albrecht U., Sterrer S., Risau W. (1992): Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532.PubMedGoogle Scholar
  21. Canfield A.E., Schor A.M. (1995): Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci 108:797–809.PubMedGoogle Scholar
  22. Culty M., Miyake K., Kincaide P.W., Silorski E., Butcher E., Underhill A.M. (1990): The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111:2765–2774.PubMedCrossRefGoogle Scholar
  23. Deroanne C.F., Colige A.C., Nusgens B.V., Lapiere C.M. (1996): Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Exp Cell Res. 224:215–223.PubMedCrossRefGoogle Scholar
  24. Dharmsathaporn K., Madara J.L. (1990): Established intestinal cell lines as model systems for electrolyte transport studies. Meth Enzymol 192:354–389.CrossRefGoogle Scholar
  25. Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. (1995): Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am J Pathol 146:1029–1039.PubMedGoogle Scholar
  26. Faham S., Hileman R.E., Fromm J.R., Lindhart R.J., Rees D.C. (1996): Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120.PubMedCrossRefGoogle Scholar
  27. Fajardo L.F., Kowalski J., Kwan H.H., Prionas S.D., Allison A.C. (1988): The disc angiogenesis system. Lab Invest 58:718–724.PubMedGoogle Scholar
  28. Feinberg R.N., Beebe D.L. (1983): Hyaluronate in vasculogenesis. Science 220:1177–1179.PubMedCrossRefGoogle Scholar
  29. Fenderson B.A., Stamenkovic I., Aruffo A. (1993): Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 54:85–98.PubMedGoogle Scholar
  30. Ferrara N. (1995): The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 36:127–137.PubMedCrossRefGoogle Scholar
  31. Ferrara N., Houck K., Jackeman L., Leung D.W. (1992a): Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Rev 13:18–35.Google Scholar
  32. Ferrara N., Winer J., Henzel W.J. (1992b): Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc Natl Acad Sci USA 89:698–702.PubMedCrossRefGoogle Scholar
  33. Fidler I.J., Ellis L.M. (1994): The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188.PubMedCrossRefGoogle Scholar
  34. Fisher C., Gilberston-Beadling S., Powers E.A., Petzold G., Poorman R., Mitchell M.A. (1994): Interstitial collagenase is required for angiogenesis in vitro. Dev Biol 162:499–510.PubMedCrossRefGoogle Scholar
  35. Flaumenhaft R., Abe M., Mignatti P., Rifkin D.B. (1992): Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation of plasminogen activator activity. J Cell Biol 118:901–909.PubMedCrossRefGoogle Scholar
  36. Folkman J. (1971): Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.PubMedCrossRefGoogle Scholar
  37. Folkman J. (1995a): Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med 1:27–31.PubMedCrossRefGoogle Scholar
  38. Folkman J. (1995b): Clinical applications of research on angiogenesis. N Engl J Med 333: 1757–1763.PubMedCrossRefGoogle Scholar
  39. Folkman J., Haudenschild C. (1980): Angiogenesis in vitro. Nature 288:551–555.PubMedCrossRefGoogle Scholar
  40. Folkman J., Klagsbrun M. (1987): Angiogenic factors. Science 235:442–447.PubMedCrossRefGoogle Scholar
  41. Folkman J., Shing Y. (1992): Angiogenesis. J Biol Chem 267:10931–10934.PubMedGoogle Scholar
  42. Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L.(1993): Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90:2690–2694.PubMedCrossRefGoogle Scholar
  43. Fotsis T., Zhang Y., Pepper M.S., Adlercreutz H., Montesano R., Nawroth P.P., Schweigerer L.(1994): The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumor growth. Nature 368:237–239.PubMedCrossRefGoogle Scholar
  44. Fotsis T., Pepper M.S., Aktas E., Rasku S., Adlercreutz H., Wähälä K., Montesano R., Schweigerer L. (1997): Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 57:2916–2921.PubMedGoogle Scholar
  45. Fràter-Schröder M., Müller G., Birchmeier W., Böhlen P. (1986): Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137:295–302.PubMedCrossRefGoogle Scholar
  46. Gajdusek C.M., Luo Z., Mayberg M.R. (1993): Basic fibroblast growth factor and transforming growth factor beta-1: synergistic mediators of angiogenesis in vitro. J Cell Physiol 157: 133–144.PubMedCrossRefGoogle Scholar
  47. Gimbrone M.A., Jr, Cotran R.S., Leapman S.B., Folkman J. (1974): Tumor growth and neovas-cularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413–427.PubMedGoogle Scholar
  48. Goto M., Goto K., Weindel K., Folkman J. (1993): Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69:508–517.PubMedGoogle Scholar
  49. Grant D.S., Tashiro K.I., Segui-Real B., Yamada Y., Martin G.R., Kleinman H.K. (1989): Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943.PubMedCrossRefGoogle Scholar
  50. Gross J.L., Moscatelli D., Jaffe E.A., Rifkin D.B. (1982): Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981.PubMedCrossRefGoogle Scholar
  51. Hall C.L., Wang C., Lange L.A., Turley E.A. (1994): Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 126:575–588.PubMedCrossRefGoogle Scholar
  52. Hardwick C., Hoare K., Owens R., Hohn H.P., Hook M., Moore D., Cripps V., Austen L., Nance D.M., Turley E.A. (1992): Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117:1343–1350.PubMedCrossRefGoogle Scholar
  53. Heimark R.L., Twardzik D.R., Schwartz S.M. (1986): Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233:1078–1080.PubMedCrossRefGoogle Scholar
  54. Hilton D.J. (1992): LIF: lots of interesting functions. Trends Biochem Sci 17:72–76.PubMedCrossRefGoogle Scholar
  55. Höckel M., Schienger K., Doctrow S., Kissel T., Vaupel P. (1993): Therapeutic angiogenesis. Arch Surg 128:423–429.PubMedGoogle Scholar
  56. Ingber D.E., Folkman J. (1989): Mechano-chemical switching between growth and differentiation during growth factor-stimulated angiogenesis in vitro: role of the extracellular matrix. J Cell Biol 109:317–330.PubMedCrossRefGoogle Scholar
  57. Iozzo R. (1985): Proteoglycans: structure, function, and role in neoplasia. Lab Invest 53:373–396.PubMedGoogle Scholar
  58. Iruela-Arispe M.L., Sage E.H. (1993): Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1. J Cell Biochem 52:414–430.CrossRefGoogle Scholar
  59. Iruela-Arispe M., Hasselaar P., Sage H. (1991): Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab Invest 64:174–186.PubMedGoogle Scholar
  60. Kim K.J., Li B., Winer J., Armanini M., Gillett N., Phillips H.S., Ferrara N. (1993): Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumor growth in vivo. Nature 362:841–844.PubMedCrossRefGoogle Scholar
  61. Klagsbrun M., D’Amore P. (1991): Regulators of angiogenesis. Annu Rev Physiol 53:217–239.PubMedCrossRefGoogle Scholar
  62. Klagsbrun M., Soker S. (1993): VEGF/VPF: the angiogenic factor found? Curr Biol 3:699–702.PubMedCrossRefGoogle Scholar
  63. Klagsbrun M., Knighton D., Folkman J. (1976): Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36:110–114.PubMedGoogle Scholar
  64. Knudson C.B., Knudson W. (1993): Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 7:1233–1241.PubMedGoogle Scholar
  65. Knudson W., Biswas C., Li X.Q., Nemee R.E., Toole B.P. (1989): The role and regulation of tumor-associated hyaluronan. In: The Biology of Hyaluronan, Ciba Foundation Symposium, Vol. 143. Evered D., Whelau J., eds., Chichester: John Wiley and Sons, pp. 150–169.Google Scholar
  66. Kubota Y., Kleinman H.K., Martin G.R., Lawley T.J. (1988): Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598.PubMedCrossRefGoogle Scholar
  67. Kujawa M.J., Carrino D.A., Caplan A.I. (1986a): Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 144:519–528.CrossRefGoogle Scholar
  68. Kujawa M., Pechak D.G., Fiszman M.Y., Caplan A.I. (1986b): Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Dev Biol 113:10–16.PubMedCrossRefGoogle Scholar
  69. Laaroubi K., Delbé J., Vacherot P., Desgranges P., Tardieu M., Jaye M., Barritault D., Courty J. (1994): Mitogenic and in vitro angiogenic activity of human recombinant heparin affin regulatory peptide. Growth Factors 10:89–98.PubMedCrossRefGoogle Scholar
  70. Lane T.F., Iruela-Arispe M.L., Johnson R.S., Sage E.H. (1994): SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125:929–943.PubMedCrossRefGoogle Scholar
  71. Laurent T.C., Fraser J.R.E. (1992): Hyaluronan. FASEB J 6:2397–2404.PubMedGoogle Scholar
  72. Lees V.C., Fan T-P.D., West D.C. (1995): Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab Invest 73:259–266.PubMedGoogle Scholar
  73. Leibovich S.J., Polverini J., Shepard H.M., Wiseman D.M., Shively V., Nuseir N. (1987): Macrophage-induced angiogenesis is mediated by tumour necrosis faetor-α. Nature 329:630–632.PubMedCrossRefGoogle Scholar
  74. Liotta L.A., Steeg P.S., Stetler-Stevenson W.G. (1991): Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–366.PubMedCrossRefGoogle Scholar
  75. Liu D., Pearlman E., Diaconu E., Guo K., Mori H., Haqqi T., Markowitz S., Willson G., Sy M-S. (1996): Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci USA 93:7832–7837.PubMedCrossRefGoogle Scholar
  76. Lokeshwar V.B., Lokeshwar B.L., Pham H.T., Block N.L. (1996): Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res 56:651–657.PubMedGoogle Scholar
  77. Maciag T., Kadish J., Wilkins L., Stemerman M.B., Weinstein R. (1982): Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94:511–520.PubMedCrossRefGoogle Scholar
  78. Madri J.A., Williams S.K. (1983): Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165.PubMedCrossRefGoogle Scholar
  79. Madri J.A., Pratt B.M. (1988): Angiogenesis. In: The Molecular and Cellular Biology of Wound Repair. Clark R.A.F., Henson P.M., eds., New York: Plenum Press, pp. 337–358.Google Scholar
  80. Madri J.A., Pratt B.M., Tucker A.M. (1988): Phenotypic modulation of endothelial cells by transforming growth factor-β depends on the composition and organization of the extracellular matrix. J Cell Biol 106:1357–1384.CrossRefGoogle Scholar
  81. Mandriota S.J., Pepper M.S. (1997): Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J. Cell Sci 110:2293–2302.PubMedGoogle Scholar
  82. Mandriota S.J., Seghezzi G., Vassalli J-D., Ferrara N., Wasi S., Mazzieri R., Mignatti P., Pepper M.S. (1995): Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716.PubMedCrossRefGoogle Scholar
  83. Mandriota S.J., Menoud P-A., Pepper M.S. (1996): Transforming browth factor β1 down-regulates vascular endothelial growth factor receptor-2/flk-l expression in vascular endothelial cells. J Biol Chem 271:11500–11505.PubMedCrossRefGoogle Scholar
  84. Mawatari M., Okamura K., Matsuda T., Hamanaka R., Mizoguchi H., Higashio K., Kohno K., Kuwano M. (1991): Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192:574–580.PubMedCrossRefGoogle Scholar
  85. Merwin J.R., Anderson J.M., Kocher O., van Itallie C.M., Madri J.A. (1990): Transforming growth factor-β1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 142:117–128.PubMedCrossRefGoogle Scholar
  86. Mignatti P., Rifkin D.B. (1996): Plasminogen activators and angiogenesis. In: Current Topics in Microbiology and Immunology, Vol.213–1: Attempts to Understand Metastasis Formation Günthert U, Birchmeier W, eds., Berlin and Heidelberg: Springer Verlag, pp. 31–49.Google Scholar
  87. Mignatti P., Tsuboi R., Robbins E., Rifkin D.B. (1989): In vitro angiogenesis on the human amniotic membrane: requirements for basic fibroblast growth factor-induced proteases. J Cell Biol 108:671–682.PubMedCrossRefGoogle Scholar
  88. Millauer B., Wizigman-Voos S., Schnürch H., Martinez R., Møller N.P.H., Risau W., Ullrich A. (1993): High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846.PubMedCrossRefGoogle Scholar
  89. Millauer B., Shawver L.K., Plate K.H., Risau W., Ullrich A. (1994): Glioblastoma growth inhibited in vivo by a dominant negative Flk-1 mutant. Nature 367:576–579.PubMedCrossRefGoogle Scholar
  90. Miyake K., Underhill C.B., Lesley J., Kincaide PW. (1990): Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 172: 69–75.PubMedCrossRefGoogle Scholar
  91. Montesano R., Orci L. (1985): Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42:469–177.PubMedCrossRefGoogle Scholar
  92. Montesano R., Orci L. (1987): Phorbol esters induce angiogenesis in vitro from large vessel endothelial cells. J Cell Physiol 130:284–291.PubMedCrossRefGoogle Scholar
  93. Montesano R., Orci L., Vassalli P. (1983): In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652.PubMedCrossRefGoogle Scholar
  94. Montesano R., Mouron P., Orci L. (1985): Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: a simple in vitro model of angiogenesis. Cell Biol Int Rep 9:869–875.PubMedCrossRefGoogle Scholar
  95. Montesano R., Vassalli J-D., Baird A., Guillemin R., Orci L. (1986): Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83:7297–7301.PubMedCrossRefGoogle Scholar
  96. Montesano R., Pepper M.S., Vassalli J-D., Orci L. (1987): Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J Cell Physiol 132:509–516.PubMedCrossRefGoogle Scholar
  97. Montesano R., Pepper M.S., Belin D., Vassalli J-D., Orci L. (1988): Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 134: 460–66.PubMedCrossRefGoogle Scholar
  98. Montesano R., Pepper M.S., Möhle-Steinlein U., Risau W., Wagner E.F., Orci L. (1990): Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445.PubMedCrossRefGoogle Scholar
  99. Montesano R., Pepper M.S., Orci L. (1993): Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105:1013–1024.PubMedGoogle Scholar
  100. Montesano R., Vassalli J-D., Orci L., Pepper M.S. (1994): The role of growth factors and extracellular matrix in angiogenesis and epithelial morphogenesis. In: Frontiers in Endocrinology. Vol. 6: Developmental Endocrinology. Sizonenko PC., Aubert M.L., Vassalli J.-D., eds., Rome: Ares-Serono Symposia Publications, pp. 43–66.Google Scholar
  101. Montesano R., Kumar S., Orci L., Pepper M.S. (1996): Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab Invest 75:249–262.PubMedGoogle Scholar
  102. Moscatelli D., Presta M., Rifkin D.B. (1986): Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration. Proc Natl Acad Sci USA 83:2091–2095.PubMedCrossRefGoogle Scholar
  103. Moses M.A., Sudhalter J., Langer R. (1990): Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1460.PubMedCrossRefGoogle Scholar
  104. Müller G., Behrens J., Nussbaumer U., Böhlen P., Birchmeier W. (1987): Inhibitory action of transforming growth factor-β on endothelial cells. Proc Natl Acad Sci USA 84:5600–5604.PubMedCrossRefGoogle Scholar
  105. Nathan C., Sporn M. (1991): Cytokines in context. J Cell Biol 113:981–986.PubMedCrossRefGoogle Scholar
  106. Nehls V., Drenckhahn D. (1995): A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50:311–322.PubMedCrossRefGoogle Scholar
  107. Neufeld G., Tessler S., Gitay-Goren H., Cohen T., Levi B-Z. (1994): Vascular endothelial growth factor and its receptors. Progr Growth Factor Res 5:89–97.CrossRefGoogle Scholar
  108. Nicosia R.F., Ottinetti A. (1990): Growth of microvessels in serum-free matrix culture of rat aorta. Lab Invest 63:115–122.PubMedGoogle Scholar
  109. Nicosia R.F., Bonanno E., Smith M., Yurchenco R (1994): Modulation of angiogenesis in vitro by laminin-entactin complex. Dev Biol 164:197–206.PubMedCrossRefGoogle Scholar
  110. Okamura K., Morimoto A., Hamanaka R., Ono M., Kohno K., Uchida Y., Kuwano M. (1992): A model system for tumor angiogenesis: involvement of transforming growth factor-α in tube formation of human microvascular endothelial cells induced by esophageal cancer cells. Biochem Biophys Res Commun 186:1471–1479.PubMedCrossRefGoogle Scholar
  111. Ornitz D.M., Herr A.B., Nilsson M., Westman J., Svahn C-M., Waksman G. (1995): FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science 268:432–136.PubMedCrossRefGoogle Scholar
  112. Paku S., Paweletz N. (1991): First steps of tumor-related angiogenesis. Lab Invest 65:334–346.PubMedGoogle Scholar
  113. Pardenaud L., Yassine F., Dieterlen-Lièvre F. (1989): Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:437–85.Google Scholar
  114. Passaniti A., Taylor R.M., Pili R., Guo Y., Long P.V., Haney J.A., Pauly R.R., Grant D.S., Martin G.R. (1992): A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528.PubMedGoogle Scholar
  115. Pepper M.S., Montesano R. (1990): Proteolytic balance and capillary morphogenesis. Cell Diff Dev 32:319–328.CrossRefGoogle Scholar
  116. Pepper M.S., Vassalli J-D., Montesano R., Orci L. (1987): Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105:2535–2541.PubMedCrossRefGoogle Scholar
  117. Pepper M.S., Belin D., Montesano R., Orci L., Vassalli J-D. (1990): Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755.PubMedCrossRefGoogle Scholar
  118. Pepper M.S., Montesano R., Vassalli J-D., Orci L. (1991a): Chondrocytes inhibit endothelial sprout formation in vitro: evidence for the involvement of a transforming growth factor-beta. J Cell Physiol 146:170–179.PubMedCrossRefGoogle Scholar
  119. Pepper M.S., Montesano R., Orci L., Vassalli J-D. (1991b): Plasminogen activator-inhibitor-1 is induced in microvascular endothelial cells by a chondrocyte-derived transforming growth factor-beta. Biochem Biophys Res Commun 176:633–638.PubMedCrossRefGoogle Scholar
  120. Pepper M.S., Ferrara N., Orci L., Montesano R. (1992a): Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831.PubMedCrossRefGoogle Scholar
  121. Pepper M.S., Sappino A-P, Montesano R., Orci L., Vassalli J-D. (1992b): Plasminogen activator inhibitor-1 is induced in migrating endothelial cells. J Cell Physiol 153:129–139.PubMedCrossRefGoogle Scholar
  122. Pepper M.S., Sappino A-P, Stocklin R., Montesano R., Orci L., Vassalli J-D. (1993a): Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 122:673–684.PubMedCrossRefGoogle Scholar
  123. Pepper M.S., Vassalli J-D., Orci L., Montesano R. (1993b): Biphasic effect of transforming growth factor-beta-1 on in vitro angiogenesis. Exp Cell Res 204:356–363.PubMedCrossRefGoogle Scholar
  124. Pepper M.S., Vassalli J-D., Orci L., Montesano R. (1994a): Angiogenesis in vitro: cytokine interactions and balanced extracellular proteolysis. In: Angiogenesis. Molecular Biology, Clinical Aspects. Maragoudakis M.E., Gullino P.M., Lelkes P.I., eds., New York: Plenum Press, pp. 149–170.Google Scholar
  125. Pepper M.S., Wasi S., Ferrara N., Orci L., Montesano R. (1994b): In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 210:298–305.PubMedCrossRefGoogle Scholar
  126. Pepper M.S., Vassalli J-D., Wilks J.W., Schweigerer L., Orci L., Montesano R. (1994c): Modulation of microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J Cell Biochem 55:419–434.PubMedCrossRefGoogle Scholar
  127. Pepper M.S., Ferrara N., Orci L., Montesano R. (1995): Leukemia inhibitory factor (LIF) is a potent inhibitor of in vitro angiogenesis. J Cell Sci 108:73–83.PubMedGoogle Scholar
  128. Pepper M.S., Mandriota S.J., Vassalli J-D., Orci L., Montesano R. (1996a): Angiogenesis-regulating cytokines: activities and interactions. In: Current Topics in Microbiology and Immunology, Vol. 213-II: Attempts to Understand Metastasis Formation. Günthert U., Birchmeier W., eds., Berlin and Heidelberg: Springer-Verlag, pp. 31–67.CrossRefGoogle Scholar
  129. Pepper M.S., Montesano R., Mandriota S.J., Orci L., Vassalli J-D. (1996b): Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49:138–162.PubMedGoogle Scholar
  130. Pepper M.S., Tacchini-Cottier F., Sabapathy T.K., Montesano R., Wagner E.F. (1997): Endothelial cells transformed by polyoma virus middle-T oncogene: a model for hemangiomas and other vascular tumors. In: Tumor Angiogenesis. Lewis C.E., Bicknell R., Ferrara N., eds., Oxford: Oxford University Press pp. 310–331.Google Scholar
  131. Peters K.G., De Vries C., Williams L.T. (1993): Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 90:8915–8919.PubMedCrossRefGoogle Scholar
  132. Phillips G.D., Whitehead R.A., Knighton D.R. (1992): Inhibition by methylprednisolone acetate suggests an indirect mechanism for TGF-β induced angiogenesis. Growth Factors 6:77–84.PubMedCrossRefGoogle Scholar
  133. Ponting J., Kumar S., Pye D. (1993): Localization of hyaluronan and hyaluronectin in normal and tumour breast tissues. Int J Oncol 2:889–893.PubMedGoogle Scholar
  134. Rak J.W., Hegmann E.J., Kerbel R.S. (1993): The role of angiogenesis in tumor progression and metastasis. Adv Mol Cell Biol 7:205–251.CrossRefGoogle Scholar
  135. Risau W., Sariola A., Zerwes H-G., Sasse J., Ekblom P., Kemler R., Doetschman T. (1988): Vasculogenesis and angiogenesis in embryonic stem cell derived embryoid bodies. Development 102:471–478.PubMedGoogle Scholar
  136. Roberts A.B., Sporn M.B., Assoian R.K., Smith J.M., Roche N.S., Wakefield L.M., Heine U.I., Liotta L.A., Falanga V., Kehrl J.H., Fauci A.S. (1986): Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171.PubMedCrossRefGoogle Scholar
  137. Rooney P., Kumar S., Ponting J., Wang M. (1995): The role of hyaluronan in tumor neovascularization. Int J Cancer 60:632–636.PubMedCrossRefGoogle Scholar
  138. Rooney P., Kumar P., Ponting J., Kumar S. (1996): The role of collagens and proteoglycans in tumor angiogenesis. In: Tumor Angiogenesis. Bicknell R., Lewis C.E., Ferrara N., eds., Oxford: Oxford University Press, 141–151.Google Scholar
  139. Saksela O., Moscatelli D., Rifkin D.B. (1987): The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells. J Cell Biol 105:957–963.PubMedCrossRefGoogle Scholar
  140. Sakuda H., Nakashima Y., Kuriyama S., Sueishi K. (1992): Media conditioned by smooth muscle cells cultured in a variety of hypoxic environments stimulates in vitro angiogenesis. A relationship to transforming growth factor-βl. Am J Pathol 141:1507–1516.PubMedGoogle Scholar
  141. Sato Y., Rifkin D.B. (1988): Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 107:119–1205.CrossRefGoogle Scholar
  142. Sato Y., Okamura K., Morimoto A., Hamanaka R., Hamaguchi K., Shimada T., Ono M., Kohno K., Sakata T., Kuwano M. (1993): Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cells in vitro. Exp Cell Res 204:223–229.PubMedCrossRefGoogle Scholar
  143. Sattar A., Kumar S., West D.C. (1992): Does hyaluronan have a role in endothelial cell proliferation of the synovium? Semin Arthr Rheum 22:37–43.CrossRefGoogle Scholar
  144. Sattar A., Rooney P., Kumar S., Pye D., West D.C., Scott I., Ledger P. (1994): Application of angiogenic oligosaccharides of hyaluronan increase blood vessel numbers in skin. J Invest Dermatol 103:573–579.CrossRefGoogle Scholar
  145. Savani R.C., Wang C., Yang B., Zhang S., Kinsella M.G., Wight T.N., Stern R., Nance D.M., Turley E.A. (1995): Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J Clin Invest 95:1158–1168.PubMedCrossRefGoogle Scholar
  146. Schlessinger J., Lax I., Lemmon M. (1995): Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357–360.PubMedCrossRefGoogle Scholar
  147. Sherman L., Sleeman J., Herrlich P., Ponta H. (1994): Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726–733.PubMedCrossRefGoogle Scholar
  148. Shweiki D., Itin A., Soffer D., Keshet E. (1992): Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-mediated angiogenesis. Nature 359:843–845.PubMedCrossRefGoogle Scholar
  149. Shweiki D., Itin A., Neufeld G., Gitay-Goren H., Keshet E. (1993): Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally-regulated angiogenesis. J Clin Invest 91:2235–2243.PubMedCrossRefGoogle Scholar
  150. Slevin M.A., Gaffney J., Kumar S. (1996): Hyaluronan induced proliferation of bovine aortic endothelial cells requires activation of MAP kinase (submitted).Google Scholar
  151. Stahl N., Yancopoulos G.D. (1993): The alphas, betas and kinases of cytokine receptor complexes. Cell 74:587–590.PubMedCrossRefGoogle Scholar
  152. Stamenkovic I., Aruffo A., Amiot M., Seed B. (1991): The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J 10:343–348.PubMedGoogle Scholar
  153. Strom S.C., Michalopoulos G. (1982): Collagen as a substrate for cell growth and differentiation. Meth Enzymol 82:544–555.PubMedCrossRefGoogle Scholar
  154. Symes J.F., Sniderman A.D. (1994): Angiogenesis: potential therapy for ischaemic disease. Curr Opin Lipidol 5:305–312.PubMedCrossRefGoogle Scholar
  155. Taga T., Kishimoto T. (1993): Cytokine receptors and signal transduction. FASEB J 7:3387–3396.Google Scholar
  156. Tessler S., Rockwell P., Hicklin D., Cohen T., Levi B-Z., Witte L., Lemischka I.R., Neufeld G. (1994): Heparin modulates the interaction of VEGF165 with soluble and cell associated Flk-1 receptors. J Biol Chem 269:12456–12461.PubMedGoogle Scholar
  157. Thomas K.A. (1996): Vascular endothelial growth factor, a potent and selective angiogenic factor. J Biol Chem 271:603–606.PubMedGoogle Scholar
  158. Toole B.P (1990): Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844.PubMedCrossRefGoogle Scholar
  159. Toole B.P. (1991): Proteoglycans and hyaluronan in morphogenesis and differentiation. In: Cell Biology of Extracellular Matrix, 2nd ed. Hay ED, ed., New York: Plenum Press, pp. 305–341.CrossRefGoogle Scholar
  160. Toole B.P, Biswas C., Gross J. (1979): Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA 76:6199–6203.CrossRefGoogle Scholar
  161. Turley E.A., Tretiak M. (1985): Glycosaminoglyeans produced by murine melanoma variants in vivo and in vitro. Cancer Res 45:5098–5105.PubMedGoogle Scholar
  162. Turley E.A., Austen L., Vandeligt K., Clary C. (1991): Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of Ras-transformed cells. J Cell Biol 112: 1041–1047.PubMedCrossRefGoogle Scholar
  163. Vassalli J-D., Sappino A-P, Belin D. (1991): The plasminogen activator/plasmin system. J Clin Invest 88:1067–1072.PubMedCrossRefGoogle Scholar
  164. Vernon R.B., Sage E.H. (1995): Between molecules and morphology: extracellular matrix and creation of vascular form. Am J Pathol 147:873–833.PubMedGoogle Scholar
  165. Vernon R.B., Lara S.L., Drake C.J., Iruela-Arispe M.L., Angello J.C., Little C.D., Wight T.N., Sage E.H. (1995): Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol 31:120–131.CrossRefGoogle Scholar
  166. Wahl S.M., Hunt D.A., Wakefield L.A., Martney-Francis N., Wahl L.M., Roberts A.B., Sporn M.B. (1987): Transforming growth factor type β induces monocyte Chemotaxis and growth factor production. Proc Natl Acad Sci USA 84:5788–5792.PubMedCrossRefGoogle Scholar
  167. Wang D-Y., Kao C-H., Yang V.C., Chen J-K. (1994): Glycosaminoglycans enhance phorbol ester-induced proteolytic activity and angiogenesis in vitro. In Vitro Cell Dev Biol 30A:777–782.CrossRefGoogle Scholar
  168. Weigel PH., Fuller G.M., LoBoeuf R.D. (1986): A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119:219–234.PubMedCrossRefGoogle Scholar
  169. West D.C., Kumar S. (1988): Endothelial cell proliferation and diabetic retinopathy. Lancet 1:715–716.PubMedCrossRefGoogle Scholar
  170. West D.C., Kumar S. (1989): The effects of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res 183:179–196.PubMedCrossRefGoogle Scholar
  171. West D.C., Hampson I.N., Arnold F., Kumar S. (1985): Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326.PubMedCrossRefGoogle Scholar
  172. Williams R.L., Risau W., Zerwes H.G., Drexler H., Aguzzi A., Wagner E.F. (1989): Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063.PubMedCrossRefGoogle Scholar
  173. Wiseman D.M., Polverini P.J., Kamp D.W., Leibovich S.J. (1988): Transforming growth factor beta (TGFβ) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 157:793–800.PubMedCrossRefGoogle Scholar
  174. Yang E.Y., Moses H.L. (1990): Transforming growth factor βl-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741.PubMedCrossRefGoogle Scholar
  175. Yasunaga C., Nakashima Y., Sueishi K. (1989): A role of fibrinolytic activity in angiogenesis. Quantitative assay using in vitro method. Lab Invest 61:698–704.PubMedGoogle Scholar
  176. Yoneda M., Yamagata M., Sakaru S., Kimata K. (1988): Hyaluronic acid modulates proliferation of mouse dermal fibroblasts in culture. J Cell Sci 90:265–273.PubMedGoogle Scholar
  177. Yoshida A., Anand-Apte B., Zetter B.R. (1996): Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser 1996

Authors and Affiliations

  • Roberto Montesano
    • 1
  • Michael S. Pepper
    • 1
  1. 1.Département de MorphologieUniversité de GenèveGenève 4Switzerland

Personalised recommendations