Advertisement

On the Betti Numbers of Nilpotent Lie Algebras of Small Dimension

  • Grant Cairns
  • Barry Jessup
  • Jane Pitkethly
Part of the Progress in Mathematics book series (PM, volume 145)

Abstract

The work of Golod and Šafarevič on class field towers motivated the conjecture that b2 > b2 1/4 for nilpotent Lie algebras of dimension at least 3, where b i denotes the i th Betti number. Using a new lower bound for b 2 and a characterization of Lie algebras of the form g/Z(g), we prove this conjecture for 2-step algebras. We also give the Betti numbers of nilpotent Lie algebras of dimension at most 7 and use them to establish the conjecture for all nilpotent Lie algebras whose centres have codimension ≤ 7.

Keywords

Betti Number Riemannian Foliation Dense Leaf Abelian Ideal Maximal Abelian Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AG]
    J. M. Anchochea Bermudez and M. Goze, Classification des algebres de Lie nilpotentes complexes de dimension 7, Arch. Math. 52 (1989), 175–185.CrossRefGoogle Scholar
  2. [ACJ]
    G. Armstrong, G. Cairns and B. Jessup, Explicit Betti numbers for a family of nilpotent Lie algebras, preprint.Google Scholar
  3. [AS]
    G. Armstrong and S. Sigg, On the cohomology of nilpotent Lie algebras containing an abelian ideal of codimension one, preprint.Google Scholar
  4. [CJ]
    G. Cairns and B. Jessup, New bounds on the Betti numbers of nilpotent Lie algebras, preprint.Google Scholar
  5. [Ca1]
    Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52.Google Scholar
  6. [Ca2]
    Y. Carrière, Feuilletages riemanniens à croissance polynomiale, Comment. Math. Helv. 63 (1988), 1–20.MathSciNetMATHCrossRefGoogle Scholar
  7. [CH]
    S. Conod and P. de La Harpe, Structure du deuxième espace de cohomologie des algebres de Lie mètabèliennes libres, C. R. Acad. Sc. Paris 280 (1975), 865–867.MATHGoogle Scholar
  8. [DS]
    Ch. Deninger and W. Singhof, On the cohomology of nilpotent Lie algebras, Bull. Soc. Math. France 116 (1988),3–14.MathSciNetMATHGoogle Scholar
  9. [Di]
    J. Dixmier, Cohomologie des algebres de Lie nilpotentes, Acta Sci. Math. Szeged 16 (1955), 246–250.MathSciNetMATHGoogle Scholar
  10. [Fu]
    D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986.MATHGoogle Scholar
  11. [Gh]
    E. Ghys, Feuilletages riemanniens sur les varietes simplement connexes, Annal. Inst. Fourier 34 (1984), 203–223.MathSciNetMATHCrossRefGoogle Scholar
  12. [GO’H]
    F. Grunewald and J. O’Halloran, Deformations of Lie algebras, J. Algebra 162 (1993), 210–224.MathSciNetMATHCrossRefGoogle Scholar
  13. [GS]
    E. S. Golod and I. R. Šafarevič, On class field towers, Amer. Math. Soc. Transl. ser. 2 48 (1965), 91–102.Google Scholar
  14. [Ha]
    S. Halperin, Le complexe de Koszul en algebre et topologie, Ann. L’Inst. Fourier 37 (1987), 77–97.MathSciNetMATHCrossRefGoogle Scholar
  15. [HS]
    G. Hochschild and J-P. Serre, Cohomology of Lie algebras, Annals Math. 57 (1953), 591–603.MathSciNetMATHCrossRefGoogle Scholar
  16. [Ko]
    J-J. Koszul, Homologie et cohomologie des algebres de Lie, Bull. Soc. Math. France 78 (1950),65–127.MathSciNetMATHGoogle Scholar
  17. [LP]
    D. Leites and G. Post, Cohomology to compute, in: Computers and Mathematics, ed. E. Kaltofen and S. M. Watt, Springer Verlag, 1989.Google Scholar
  18. [Ma]
    L. Magnin, Adjoint and Trivial Cohomology Tables for Indecomposable Nilpotent Lie Algebras of Dimension ≤ 7 over C, preprint.Google Scholar
  19. [M-B]
    M-P. Malliavin-Brameret, Cohomologie d’algèbres de Lie nilpotentes, et caractéristiques d’Euler-Poincare, Bull. Sci. math. 100 (1976), 269–287.MathSciNetMATHGoogle Scholar
  20. [Mo]
    P. Molino, Riemannian Foliations, Birkhauser, Boston, 1988.MATHGoogle Scholar
  21. [Ni]
    O. Nielsen, Unitary Representations and Coadjoint Orbits of LowDimensional Nilpotent Lie Groups, Queen’s Papers in Pure Appl. Math. (63), Queen’s University, Kingston, Canada, 1983.Google Scholar
  22. [Ro]
    M. Romdhani, Classification of real and complex nilpotent Lie algebras of dimension 7, Linear and Multilinear Algebra 24 (1989), 167–189.MathSciNetMATHCrossRefGoogle Scholar
  23. [Se1]
    C. Seeley, Degenerations of 6-dimensional nilpotent Lie algebras over C, Comm. Algebra 18 (1990), 3493–3505.MathSciNetMATHCrossRefGoogle Scholar
  24. [Se2]
    C. Seeley, 7-dimensional nilpotent Lie algebras Trans. Amer. Math. Soc. 335 (1993), 479–496.MathSciNetMATHCrossRefGoogle Scholar
  25. [Si]
    S. Sigg, Zur Kohomologie von nilpotenten Liealgebren, Diplomarbeit, Bonn, 1991.Google Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Grant Cairns
    • 1
  • Barry Jessup
    • 2
  • Jane Pitkethly
    • 3
  1. 1.School of MathematicsLa Trobe UniversityMelbourneAustralia
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada
  3. 3.School of MathematicsLa Trobe UniversityMelbourneAustralia

Personalised recommendations