On the Betti Numbers of Nilpotent Lie Algebras of Small Dimension

  • Grant Cairns
  • Barry Jessup
  • Jane Pitkethly
Conference paper
Part of the Progress in Mathematics book series (PM, volume 145)


The work of Golod and Šafarevič on class field towers motivated the conjecture that b2 > b2 1/4 for nilpotent Lie algebras of dimension at least 3, where b i denotes the i th Betti number. Using a new lower bound for b 2 and a characterization of Lie algebras of the form g/Z(g), we prove this conjecture for 2-step algebras. We also give the Betti numbers of nilpotent Lie algebras of dimension at most 7 and use them to establish the conjecture for all nilpotent Lie algebras whose centres have codimension ≤ 7.


Manifold Betti 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AG]
    J. M. Anchochea Bermudez and M. Goze, Classification des algebres de Lie nilpotentes complexes de dimension 7, Arch. Math. 52 (1989), 175–185.CrossRefGoogle Scholar
  2. [ACJ]
    G. Armstrong, G. Cairns and B. Jessup, Explicit Betti numbers for a family of nilpotent Lie algebras, preprint.Google Scholar
  3. [AS]
    G. Armstrong and S. Sigg, On the cohomology of nilpotent Lie algebras containing an abelian ideal of codimension one, preprint.Google Scholar
  4. [CJ]
    G. Cairns and B. Jessup, New bounds on the Betti numbers of nilpotent Lie algebras, preprint.Google Scholar
  5. [Ca1]
    Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52.Google Scholar
  6. [Ca2]
    Y. Carrière, Feuilletages riemanniens à croissance polynomiale, Comment. Math. Helv. 63 (1988), 1–20.MathSciNetMATHCrossRefGoogle Scholar
  7. [CH]
    S. Conod and P. de La Harpe, Structure du deuxième espace de cohomologie des algebres de Lie mètabèliennes libres, C. R. Acad. Sc. Paris 280 (1975), 865–867.MATHGoogle Scholar
  8. [DS]
    Ch. Deninger and W. Singhof, On the cohomology of nilpotent Lie algebras, Bull. Soc. Math. France 116 (1988),3–14.MathSciNetMATHGoogle Scholar
  9. [Di]
    J. Dixmier, Cohomologie des algebres de Lie nilpotentes, Acta Sci. Math. Szeged 16 (1955), 246–250.MathSciNetMATHGoogle Scholar
  10. [Fu]
    D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986.MATHGoogle Scholar
  11. [Gh]
    E. Ghys, Feuilletages riemanniens sur les varietes simplement connexes, Annal. Inst. Fourier 34 (1984), 203–223.MathSciNetMATHCrossRefGoogle Scholar
  12. [GO’H]
    F. Grunewald and J. O’Halloran, Deformations of Lie algebras, J. Algebra 162 (1993), 210–224.MathSciNetMATHCrossRefGoogle Scholar
  13. [GS]
    E. S. Golod and I. R. Šafarevič, On class field towers, Amer. Math. Soc. Transl. ser. 2 48 (1965), 91–102.Google Scholar
  14. [Ha]
    S. Halperin, Le complexe de Koszul en algebre et topologie, Ann. L’Inst. Fourier 37 (1987), 77–97.MathSciNetMATHCrossRefGoogle Scholar
  15. [HS]
    G. Hochschild and J-P. Serre, Cohomology of Lie algebras, Annals Math. 57 (1953), 591–603.MathSciNetMATHCrossRefGoogle Scholar
  16. [Ko]
    J-J. Koszul, Homologie et cohomologie des algebres de Lie, Bull. Soc. Math. France 78 (1950),65–127.MathSciNetMATHGoogle Scholar
  17. [LP]
    D. Leites and G. Post, Cohomology to compute, in: Computers and Mathematics, ed. E. Kaltofen and S. M. Watt, Springer Verlag, 1989.Google Scholar
  18. [Ma]
    L. Magnin, Adjoint and Trivial Cohomology Tables for Indecomposable Nilpotent Lie Algebras of Dimension ≤ 7 over C, preprint.Google Scholar
  19. [M-B]
    M-P. Malliavin-Brameret, Cohomologie d’algèbres de Lie nilpotentes, et caractéristiques d’Euler-Poincare, Bull. Sci. math. 100 (1976), 269–287.MathSciNetMATHGoogle Scholar
  20. [Mo]
    P. Molino, Riemannian Foliations, Birkhauser, Boston, 1988.MATHGoogle Scholar
  21. [Ni]
    O. Nielsen, Unitary Representations and Coadjoint Orbits of LowDimensional Nilpotent Lie Groups, Queen’s Papers in Pure Appl. Math. (63), Queen’s University, Kingston, Canada, 1983.Google Scholar
  22. [Ro]
    M. Romdhani, Classification of real and complex nilpotent Lie algebras of dimension 7, Linear and Multilinear Algebra 24 (1989), 167–189.MathSciNetMATHCrossRefGoogle Scholar
  23. [Se1]
    C. Seeley, Degenerations of 6-dimensional nilpotent Lie algebras over C, Comm. Algebra 18 (1990), 3493–3505.MathSciNetMATHCrossRefGoogle Scholar
  24. [Se2]
    C. Seeley, 7-dimensional nilpotent Lie algebras Trans. Amer. Math. Soc. 335 (1993), 479–496.MathSciNetMATHCrossRefGoogle Scholar
  25. [Si]
    S. Sigg, Zur Kohomologie von nilpotenten Liealgebren, Diplomarbeit, Bonn, 1991.Google Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Grant Cairns
    • 1
  • Barry Jessup
    • 2
  • Jane Pitkethly
    • 3
  1. 1.School of MathematicsLa Trobe UniversityMelbourneAustralia
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada
  3. 3.School of MathematicsLa Trobe UniversityMelbourneAustralia

Personalised recommendations