Classical Solutions for a Perturbed N-Body System

  • Gianfausto Dell’ Antonio
Conference paper
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 27)


In this review I shall consider the perturbed N-body system, i.e., a system composed of N point bodies of masses m 1,…m N , described in cartesian coordinates
$$ x_1,...x_N,\,x_k \in R^3 \,x_k \equiv \{ x_k,1,\,x_k,2,\,x_k,3\} $$
by the system of equations
$$ m_k \ddot x_k = g\,\sum\limits_{1 \leqslant i < k \leqslant N} {\frac{{m_i m_k }}{{\left| {x_i - x_k } \right|^3 }}(x_k - x_i ) + \nabla _k w(x,t)} $$
$$ \nabla _{k,m} \equiv \frac{\partial }{{\partial x_{k.m} }},\,m = 1,2,3. $$


Periodic Solution Weak Solution Classical Solution Critical Point Theory Kepler Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    A. Ambrosetti, Critical point theory and nonlinear variational problems, Bull. Soc. Math, de france 120(49) (1992).Google Scholar
  2. [A, CZ1]
    A. Ambrosetti, V. Coti-Zelati, Periodic Solutions for Lagrangian Systems with Singular Potentials, Birkhäuser, Basel, 1994.Google Scholar
  3. [A, CZ2]
    A. Ambrosetti, V. Coti-Zelat, Closed orbits of fixed energy for a class of -body systems, Ann. Inst. H. Poincaré, Analyse nonlineaire 9(1992), 187–200.MATHGoogle Scholar
  4. [A, CZ3]
    A. Ambrosetti, V. Coti-Zelati, Noncollision periodic solutions for a class of symmetric three-body problems, reprint 15, Scuola Normale Superiore, Pisa, Marzo, 1994.Google Scholar
  5. [A, R]
    A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory, Journal of Functional Analysis 14(1973), 349–381.MATHCrossRefMathSciNetGoogle Scholar
  6. [A, S]
    A. Ambrosetti, M. Struwe, Nonlinear Diff. Eq. and Applications 1 (1994), 179–202.MATHCrossRefMathSciNetGoogle Scholar
  7. [A, T,V]
    A. Ambrosetti, K. Tanaka, E. Vitillaro, Periodic solutions with prescribed energy for some keplerian AT-body problems, reprint 31, S.N.S. Pisa Novembre 1993.Google Scholar
  8. [B, L]
    A. Bahri, P.L Lions, Morse index of some minimax critical points, Comm. Pure Applied Math. 41(1988), 1027–1036.MATHCrossRefMathSciNetGoogle Scholar
  9. [B, R]
    A. Bahri, P. Rabinowitz, Periodic solutions of hamiltonian systems of three-body type, Ann. H. Poincaré, Analyse nonlineaire 8 (1991), 561–649.MATHMathSciNetGoogle Scholar
  10. [Be]
    A. Beaulieu, Etude des solutions generalizees pour un system hamiltonien avec potentiel singulier, Duke Math. Journal 67(1992), 21–37.MATHCrossRefMathSciNetGoogle Scholar
  11. [Bn, G]
    V. Benci, M. Giannone, Periodic orbits of prescribed energy for a class of hamiltoniana systems with singular potential, Journal of Differential Equations 82 (1989), 60–70.MATHCrossRefMathSciNetGoogle Scholar
  12. [C]
    C. Conley, Isolated Invariant sets and Morse index, CBMS 38, AMS, Providence RI, 1978.Google Scholar
  13. [C, E]
    C. Conley, R. Easton, Isolated invariant sets and isolating blocks, Trans. Am. Mat. Soc. 158(1971), 35–61.MATHCrossRefMathSciNetGoogle Scholar
  14. [CZ1]
    V. Coti-Zelati, Variational methods for singular lagrangian systems, School on Variational and Local Methods for Hamiltonian Systems, ICTP Trieste 1994.Google Scholar
  15. [CZ2]
    V. Coti-Zelati, Ann. Inst. H. Poincaré, Analyse nonlineaire 7 (1990), 477–492.MATHMathSciNetGoogle Scholar
  16. [D]
    G.F. Dell’Antonio, Finding collision solutions for a perturbed AT-body problem, preprint, N, in press.Google Scholar
  17. [D, G]
    M. Degiovanni, F. Giannoni, Dynamical systems with newtonian type potentials, Annali Scuola Normale Superiore Pisa 4 (1989), 467–494.Google Scholar
  18. [Dv]
    R. Devaney, American Math. Monthly 89 (1982), 535–552.MATHCrossRefMathSciNetGoogle Scholar
  19. [E]
    R. Easton, Journal of Diff. Eq. 10 (1972), 361–384.CrossRefMathSciNetGoogle Scholar
  20. [El]
    M. S. Elbialy, Collision singularities in celestial mechanics, SI AM Journal of Math. Analysis 21(1990), 1563–1593.MATHCrossRefMathSciNetGoogle Scholar
  21. [Eu]
    L. Euler, De motu rectilineo triorum corporum, Novi Comm. Acad. Sei. Imp. Petrob. 11 (1767), 144–151.Google Scholar
  22. [F, H1]
    E. Fadell, S. Husseini, A note on the category of free loop space, Proc. Roy. Soc. Edinurgh 107(1989), 527–536.MATHMathSciNetGoogle Scholar
  23. [F, H2]
    E. Fadell, S. Husseini, Infinite cup length in free loop space with an application to a problem of AT-body type, Ann. Inst. H. Poincaré, Anal, non Lineaire 9 (1992), 305–319.MATHMathSciNetGoogle Scholar
  24. [G]
    C. Greco, Periodic solutions for a class of hamiltonian systems, Nonlinear Analysis 12(1988), 259–269.MATHCrossRefMathSciNetGoogle Scholar
  25. [L]
    J.L. Lagrange, Oeuvres 6 (1873), 272–292.Google Scholar
  26. [Ma, Mc]
    J. Mather, R. Mc Gehee, Orbits which become unbounded in finite time, Proceedings Battelle Rencontres(1974).Google Scholar
  27. [Mcl]
    R. Mc Gehee, Triple collisions in the colinear three-body problem, Invent. Math. 27(1974), 191–227.CrossRefMathSciNetGoogle Scholar
  28. [Mc2]
    R. Mc Gehee, Singularities in classical celestial mechanics, Proc. ICM, Helsinki 1978. Google Scholar
  29. [M, W]
    J. Mawkin, M. Willem, Critical point theory of hamiltonian systems, Applied Mathematical Sciences 74 (1989), Springer Verlag.Google Scholar
  30. [Ml]
    R. Moeckel, Celestial mechanics, School on Variational and Local Methods for Hamiltonian Systems, ICTP Trieste 1994.Google Scholar
  31. [M2]
    R. Moecke, Orbits near triple collisions in the three-body problem, Indiana Univ. Math. Journal 32(1983), 221–240.CrossRefGoogle Scholar
  32. [M3]
    R. Moeckel, On central configurations, Math. Zeitschrift 205(1990), 499–517.MATHCrossRefMathSciNetGoogle Scholar
  33. [M, S]
    R. Moeckel, C. Simo, Bifurcation of spacial central configurations from planar ones, Siam J. of Math. Analysis 26 (1995), 978–998.MATHCrossRefMathSciNetGoogle Scholar
  34. [Mo]
    J. Moser, Comm. Pure Applied Math. XXIII (1970), 609–636.MATHCrossRefGoogle Scholar
  35. [Mj, Tl]
    P. Mayer, S. Terracini, Periodic solutions of some problems of -body type problem, Arch. Rat. Mech. and Anal. 124(1993), 381–404.CrossRefGoogle Scholar
  36. [Mj, T2]
    P. Majer, S. Terracini, Periodic solutions of some problems of -body type problem: the fixed energy case, Duke Math. Journal 69 (1993), 683–697.MATHCrossRefMathSciNetGoogle Scholar
  37. [P]
    F. Pacella, Central configurations in the rc-body problem and equivariant Morse theory, Arch. Rat. Mech. Anal. 97(1987), 59–74.MATHCrossRefMathSciNetGoogle Scholar
  38. [Pa]
    P. Painlevé, Leçon sur la Theorie Analytique des Equations Différentielles, Stockholm 1895, Hermann, Paris, 1987.Google Scholar
  39. [PI]
    J. Palmore, Classifying relative equilibria I, II, III, Bull AMS bf 79 (1973), 904–908;MATHMathSciNetGoogle Scholar
  40. J. Palmore Bull. AMS 81 (1975), 489–491;MATHCrossRefMathSciNetGoogle Scholar
  41. J. Palmore Lett. Math. Phys. 1 (1975), 71–73.MATHCrossRefMathSciNetGoogle Scholar
  42. [R]
    H. Riahi, Periodic orbits of the TV-body problem, Ph.D. thesis, Rutgers University, New Brunswick, N.J. 1992.Google Scholar
  43. [Sa]
    D. Saari, The manifold structure for collisions in the n-body problem, Journal of Differential Equations 55(1981), 300–329.CrossRefMathSciNetGoogle Scholar
  44. [Sa, H]
    D. Saari, N. Hulkover, On the manifold of total collapse orbits for the n-body system, Journal of Differential Eq. 41 (1981), 27–43.MATHCrossRefGoogle Scholar
  45. [S, T]
    E. Serra, S. Terracini, Arch. Rat. Mech. Anal. 120(1992), 305–325.MATHCrossRefMathSciNetGoogle Scholar
  46. [Sh]
    M. Shub, Diagonals and relative equilibria, Lect. Notes in Mathematics 197(1971), Springer Verlag, Berlin.Google Scholar
  47. [S, M]
    K. Siegel, J. Moser, Lectures on Celestial Mechanics, Springer, 1971.MATHGoogle Scholar
  48. [Su]
    K. Sundman, Nouvelles recherches sur le problème des trois corps, Acta Societatis Scientiarum Fennicae 34(1906), 1–43.Google Scholar
  49. [T595]
    K. Tanaka, Noncollision solutions for a second order hamiltonian system with weak force, Ann. Inst. H. Poincaré, Analyse Nonlineare 10(1993), 215–238.MATHGoogle Scholar
  50. [Tel]
    S. Terracini, A homotopical index and multiplicity of periodic solutions of dynamical stystems with singular potentials, preprint 1991.Google Scholar
  51. [Te2]
    S. Terracini, A prescribeed energy problem for a singular hamiltoniana system with weak force, Journal of Functional Analysis 113(1993), 351–390.CrossRefMathSciNetGoogle Scholar
  52. [W]
    A. Wintner, The Analytic Foundations of Celestial Mechanics, Princeton University Press, 1947.Google Scholar
  53. [VZ]
    H. von Zeipel, Sur les singualriteés du probléme des n Corps, Arch. Mat. Astronomi och Fysik 4(1908), 1–4.Google Scholar
  54. [XI]
    Z. Xia, Central configurations with many small masses, Journ. Diff. Eq. 91(1991), 168–179.MATHCrossRefGoogle Scholar
  55. [X2]
    Z. Xia, The noncollision singularity of the 5-body problem, preprintGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Gianfausto Dell’ Antonio
    • 1
  1. 1.Dip. di MatematicaUniv. Roma, La Sapienza Laboratorio Interdisciplinare, SISSATriesteItaly

Personalised recommendations