Classical Solutions for a Perturbed N-Body System

  • Gianfausto Dell’ Antonio
Conference paper
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 27)

Abstract

In this review I shall consider the perturbed N-body system, i.e., a system composed of N point bodies of masses m 1,…m N , described in cartesian coordinates
$$ x_1,...x_N,\,x_k \in R^3 \,x_k \equiv \{ x_k,1,\,x_k,2,\,x_k,3\} $$
by the system of equations
$$ m_k \ddot x_k = g\,\sum\limits_{1 \leqslant i < k \leqslant N} {\frac{{m_i m_k }}{{\left| {x_i - x_k } \right|^3 }}(x_k - x_i ) + \nabla _k w(x,t)} $$
(0.1)
where
$$ \nabla _{k,m} \equiv \frac{\partial }{{\partial x_{k.m} }},\,m = 1,2,3. $$

Keywords

Manifold Refraction Lution Dition Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    A. Ambrosetti, Critical point theory and nonlinear variational problems, Bull. Soc. Math, de france 120(49) (1992).Google Scholar
  2. [A, CZ1]
    A. Ambrosetti, V. Coti-Zelati, Periodic Solutions for Lagrangian Systems with Singular Potentials, Birkhäuser, Basel, 1994.Google Scholar
  3. [A, CZ2]
    A. Ambrosetti, V. Coti-Zelat, Closed orbits of fixed energy for a class of -body systems, Ann. Inst. H. Poincaré, Analyse nonlineaire 9(1992), 187–200.MATHGoogle Scholar
  4. [A, CZ3]
    A. Ambrosetti, V. Coti-Zelati, Noncollision periodic solutions for a class of symmetric three-body problems, reprint 15, Scuola Normale Superiore, Pisa, Marzo, 1994.Google Scholar
  5. [A, R]
    A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory, Journal of Functional Analysis 14(1973), 349–381.MATHCrossRefMathSciNetGoogle Scholar
  6. [A, S]
    A. Ambrosetti, M. Struwe, Nonlinear Diff. Eq. and Applications 1 (1994), 179–202.MATHCrossRefMathSciNetGoogle Scholar
  7. [A, T,V]
    A. Ambrosetti, K. Tanaka, E. Vitillaro, Periodic solutions with prescribed energy for some keplerian AT-body problems, reprint 31, S.N.S. Pisa Novembre 1993.Google Scholar
  8. [B, L]
    A. Bahri, P.L Lions, Morse index of some minimax critical points, Comm. Pure Applied Math. 41(1988), 1027–1036.MATHCrossRefMathSciNetGoogle Scholar
  9. [B, R]
    A. Bahri, P. Rabinowitz, Periodic solutions of hamiltonian systems of three-body type, Ann. H. Poincaré, Analyse nonlineaire 8 (1991), 561–649.MATHMathSciNetGoogle Scholar
  10. [Be]
    A. Beaulieu, Etude des solutions generalizees pour un system hamiltonien avec potentiel singulier, Duke Math. Journal 67(1992), 21–37.MATHCrossRefMathSciNetGoogle Scholar
  11. [Bn, G]
    V. Benci, M. Giannone, Periodic orbits of prescribed energy for a class of hamiltoniana systems with singular potential, Journal of Differential Equations 82 (1989), 60–70.MATHCrossRefMathSciNetGoogle Scholar
  12. [C]
    C. Conley, Isolated Invariant sets and Morse index, CBMS 38, AMS, Providence RI, 1978.Google Scholar
  13. [C, E]
    C. Conley, R. Easton, Isolated invariant sets and isolating blocks, Trans. Am. Mat. Soc. 158(1971), 35–61.MATHCrossRefMathSciNetGoogle Scholar
  14. [CZ1]
    V. Coti-Zelati, Variational methods for singular lagrangian systems, School on Variational and Local Methods for Hamiltonian Systems, ICTP Trieste 1994.Google Scholar
  15. [CZ2]
    V. Coti-Zelati, Ann. Inst. H. Poincaré, Analyse nonlineaire 7 (1990), 477–492.MATHMathSciNetGoogle Scholar
  16. [D]
    G.F. Dell’Antonio, Finding collision solutions for a perturbed AT-body problem, preprint, N, in press.Google Scholar
  17. [D, G]
    M. Degiovanni, F. Giannoni, Dynamical systems with newtonian type potentials, Annali Scuola Normale Superiore Pisa 4 (1989), 467–494.Google Scholar
  18. [Dv]
    R. Devaney, American Math. Monthly 89 (1982), 535–552.MATHCrossRefMathSciNetGoogle Scholar
  19. [E]
    R. Easton, Journal of Diff. Eq. 10 (1972), 361–384.CrossRefMathSciNetGoogle Scholar
  20. [El]
    M. S. Elbialy, Collision singularities in celestial mechanics, SI AM Journal of Math. Analysis 21(1990), 1563–1593.MATHCrossRefMathSciNetGoogle Scholar
  21. [Eu]
    L. Euler, De motu rectilineo triorum corporum, Novi Comm. Acad. Sei. Imp. Petrob. 11 (1767), 144–151.Google Scholar
  22. [F, H1]
    E. Fadell, S. Husseini, A note on the category of free loop space, Proc. Roy. Soc. Edinurgh 107(1989), 527–536.MATHMathSciNetGoogle Scholar
  23. [F, H2]
    E. Fadell, S. Husseini, Infinite cup length in free loop space with an application to a problem of AT-body type, Ann. Inst. H. Poincaré, Anal, non Lineaire 9 (1992), 305–319.MATHMathSciNetGoogle Scholar
  24. [G]
    C. Greco, Periodic solutions for a class of hamiltonian systems, Nonlinear Analysis 12(1988), 259–269.MATHCrossRefMathSciNetGoogle Scholar
  25. [L]
    J.L. Lagrange, Oeuvres 6 (1873), 272–292.Google Scholar
  26. [Ma, Mc]
    J. Mather, R. Mc Gehee, Orbits which become unbounded in finite time, Proceedings Battelle Rencontres(1974).Google Scholar
  27. [Mcl]
    R. Mc Gehee, Triple collisions in the colinear three-body problem, Invent. Math. 27(1974), 191–227.CrossRefMathSciNetGoogle Scholar
  28. [Mc2]
    R. Mc Gehee, Singularities in classical celestial mechanics, Proc. ICM, Helsinki 1978. Google Scholar
  29. [M, W]
    J. Mawkin, M. Willem, Critical point theory of hamiltonian systems, Applied Mathematical Sciences 74 (1989), Springer Verlag.Google Scholar
  30. [Ml]
    R. Moeckel, Celestial mechanics, School on Variational and Local Methods for Hamiltonian Systems, ICTP Trieste 1994.Google Scholar
  31. [M2]
    R. Moecke, Orbits near triple collisions in the three-body problem, Indiana Univ. Math. Journal 32(1983), 221–240.CrossRefGoogle Scholar
  32. [M3]
    R. Moeckel, On central configurations, Math. Zeitschrift 205(1990), 499–517.MATHCrossRefMathSciNetGoogle Scholar
  33. [M, S]
    R. Moeckel, C. Simo, Bifurcation of spacial central configurations from planar ones, Siam J. of Math. Analysis 26 (1995), 978–998.MATHCrossRefMathSciNetGoogle Scholar
  34. [Mo]
    J. Moser, Comm. Pure Applied Math. XXIII (1970), 609–636.MATHCrossRefGoogle Scholar
  35. [Mj, Tl]
    P. Mayer, S. Terracini, Periodic solutions of some problems of -body type problem, Arch. Rat. Mech. and Anal. 124(1993), 381–404.CrossRefGoogle Scholar
  36. [Mj, T2]
    P. Majer, S. Terracini, Periodic solutions of some problems of -body type problem: the fixed energy case, Duke Math. Journal 69 (1993), 683–697.MATHCrossRefMathSciNetGoogle Scholar
  37. [P]
    F. Pacella, Central configurations in the rc-body problem and equivariant Morse theory, Arch. Rat. Mech. Anal. 97(1987), 59–74.MATHCrossRefMathSciNetGoogle Scholar
  38. [Pa]
    P. Painlevé, Leçon sur la Theorie Analytique des Equations Différentielles, Stockholm 1895, Hermann, Paris, 1987.Google Scholar
  39. [PI]
    J. Palmore, Classifying relative equilibria I, II, III, Bull AMS bf 79 (1973), 904–908;MATHMathSciNetGoogle Scholar
  40. J. Palmore Bull. AMS 81 (1975), 489–491;MATHCrossRefMathSciNetGoogle Scholar
  41. J. Palmore Lett. Math. Phys. 1 (1975), 71–73.MATHCrossRefMathSciNetGoogle Scholar
  42. [R]
    H. Riahi, Periodic orbits of the TV-body problem, Ph.D. thesis, Rutgers University, New Brunswick, N.J. 1992.Google Scholar
  43. [Sa]
    D. Saari, The manifold structure for collisions in the n-body problem, Journal of Differential Equations 55(1981), 300–329.CrossRefMathSciNetGoogle Scholar
  44. [Sa, H]
    D. Saari, N. Hulkover, On the manifold of total collapse orbits for the n-body system, Journal of Differential Eq. 41 (1981), 27–43.MATHCrossRefGoogle Scholar
  45. [S, T]
    E. Serra, S. Terracini, Arch. Rat. Mech. Anal. 120(1992), 305–325.MATHCrossRefMathSciNetGoogle Scholar
  46. [Sh]
    M. Shub, Diagonals and relative equilibria, Lect. Notes in Mathematics 197(1971), Springer Verlag, Berlin.Google Scholar
  47. [S, M]
    K. Siegel, J. Moser, Lectures on Celestial Mechanics, Springer, 1971.MATHGoogle Scholar
  48. [Su]
    K. Sundman, Nouvelles recherches sur le problème des trois corps, Acta Societatis Scientiarum Fennicae 34(1906), 1–43.Google Scholar
  49. [T595]
    K. Tanaka, Noncollision solutions for a second order hamiltonian system with weak force, Ann. Inst. H. Poincaré, Analyse Nonlineare 10(1993), 215–238.MATHGoogle Scholar
  50. [Tel]
    S. Terracini, A homotopical index and multiplicity of periodic solutions of dynamical stystems with singular potentials, preprint 1991.Google Scholar
  51. [Te2]
    S. Terracini, A prescribeed energy problem for a singular hamiltoniana system with weak force, Journal of Functional Analysis 113(1993), 351–390.CrossRefMathSciNetGoogle Scholar
  52. [W]
    A. Wintner, The Analytic Foundations of Celestial Mechanics, Princeton University Press, 1947.Google Scholar
  53. [VZ]
    H. von Zeipel, Sur les singualriteés du probléme des n Corps, Arch. Mat. Astronomi och Fysik 4(1908), 1–4.Google Scholar
  54. [XI]
    Z. Xia, Central configurations with many small masses, Journ. Diff. Eq. 91(1991), 168–179.MATHCrossRefGoogle Scholar
  55. [X2]
    Z. Xia, The noncollision singularity of the 5-body problem, preprintGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Gianfausto Dell’ Antonio
    • 1
  1. 1.Dip. di MatematicaUniv. Roma, La Sapienza Laboratorio Interdisciplinare, SISSATriesteItaly

Personalised recommendations