Skip to main content

Inverse Eigenvalue Problems for Multivariable Linear Systems

  • Conference paper
Systems and Control in the Twenty-First Century

Part of the book series: Systems & Control: Foundations & Applications ((PSCT,volume 22))

Abstract

Many inverse eigenvalue problems appearing in control theory and other areas are characterized by polynomial equations. Algebraic geometry is the mathematical theory which deals with polynomial equations. It is extending the theory of linear algebra and it deals with the study of zero sets of systems of polynomial equations, i.e. algebraic sets and varieties, and with polynomial morphisms between varieties.

Supported in part by NSF grant DMS-9400965.

Supported in part by NSF grant DMS-9500594.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abhyankar. Algebraic Geometry for Scientists and Engineers. Providence, R.I.: AMS, 1990.

    Book  MATH  Google Scholar 

  2. S. Ariki. Generic pole assignment via dynamic feedback. Preprint, 1994.

    Google Scholar 

  3. F. M. Brash and J. B. Pearson. Pole placement using dynamic compensators. IEEE Trans. Automat. Control AC-15 (1970), 34–43.

    Article  Google Scholar 

  4. R. W. Brockett and C. I. Byrnes. Multivariable Nyquist criteria, root loci and pole placement: a geometric viewpoint. IEEE Trans. Automat. Control AC-26 (1981), 271–284.

    Article  MathSciNet  Google Scholar 

  5. C. I. Byrnes. Pole assignment by output feedback. Three Decades of Mathematical System Theory. (H. Nijmeijer and J. M. Schumacher, Eds.). Lecture Notes in Control and Information Sciences. Vol. 135. New York: Springer Verlag, 1989. 31–78.

    Chapter  Google Scholar 

  6. C. I. Byrnes and X. Wang. The additive inverse eigenvalue problem for lie perturbations. SIAM J. Matrix Anal. Appl. 14(1) (1993), 113–117.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Cox, J. Little and D.O. O’Shea. Ideals, Varieties and Algorithms. New York: Springer Verlag, 1992.

    Book  MATH  Google Scholar 

  8. E.J. Davison. On pole assignment in linear systems with incomplete state feedback. IEEE Trans. Automat. Control AC-15 (1970), 348–351.

    Article  MathSciNet  Google Scholar 

  9. P. Falb. Methods of Algebraic Geometry in Control Theory: Part I. Boston: Birkhäuser, 1990.

    Book  MATH  Google Scholar 

  10. S. Friedland. Inverse eigenvalue problems. Linear Algebra Appl. 17 (1977), 15–51.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Fulton. Intersection Theory. New York: Springer Verlag, 1984.

    Book  MATH  Google Scholar 

  12. I. Gohberg, M. A. Kaashoek, and F. van Schagen. Partially Specified Matrices and Operators: Classification, Completion, Applications. Boston: Birkäuser, 1995.

    Book  MATH  Google Scholar 

  13. J. Harris. Algebraic Geometry, A First Course. New York: Springer Verlag, 1992.

    MATH  Google Scholar 

  14. R. Hartshorne. Algebraic Geometry. Berlin: Springer Verlag, 1977.

    Book  MATH  Google Scholar 

  15. U. Helmke and J. Rosenthal. Eigenvalue inequalities and Schubert calculus. Mathematische Nachrichten 171 (1995), 207–225.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Helton, J. Rosenthal, and X. Wang. Matrix extensions and eigenvalue completions, the generic case. To appear Trans. Amer. Math. Soc.

    Google Scholar 

  17. R. Hermann and C. F. Martin. Applications of algebraic geometry to system theory. Part I. IEEE Trans. Automat. Control AC-22 (1977), 19–25.

    Google Scholar 

  18. H. Kimura. Pole assignment by gain output feedback. IEEE Trans. Automat. Control AC-20 (1975), 509–516.

    Article  Google Scholar 

  19. S. L. Kleiman. Problem 15: Rigorous foundations of Schubert’s enumerative calculus. Proceedings of Symposia in Pure Mathematics, American Mathematics Society 1976. 445–482.

    Google Scholar 

  20. S. L. Kleiman and D. Laksov. Schubert calculus. Amer. Math. Monthly 79 (1972), 1061–1082.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kuijper. Why do stabilizing controllers stabilize? Automatica. 31(4) (1995), 621–625.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Leventides. Algebrogeometric and Topological Methods in Control Theory. Ph.D. Dissertation. City University of London. London, England. 1993.

    Google Scholar 

  23. J. Leventides and N. Karcanias. Global asymptotic linearisation of the pole placement map: a closed form solution for the constant output feedback problem. Automatica. 31(9) (1995), 1303–1309.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. G. Lomadze. Finite-dimensional time-invariant linear dynamical systems: algebraic theory. Acta Appl. Math. 19 (1990), 149–201.

    MathSciNet  MATH  Google Scholar 

  25. C. F. Martin and R. Hermann. Applications of algebraic geometry to system theory: the McMillan degree and Kronecker indices as topological and holomorphic invariants. SIAM J. Control Optim. 16 (1978), 743–755.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Mumford. Algebraic Geometry I: Complex Projective Varieties. New York: Springer Verlag, 1976.

    MATH  Google Scholar 

  27. M. S. Ravi and J. Rosenthal. A smooth compactification of the space of transfer functions with fixed McMillan degree. Acta Appl. Math. 34 (1994), 329–352.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. S. Ravi and J. Rosenthal. A general realization theory for higher order linear differential equations. Systems & Control Letters. 25(5) (1995), 351–360.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. S. Ravi, J. Rosenthal, and X. Wang. On decentralized dynamic pole placement and feedback stabilization. IEEE Trans. Automat. Contr.. 40(9) (1995), 1603–1614.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. S. Ravi, J. Rosenthal, and X. Wang. Dynamic pole assignment and Schubert calculus. SIAM J. Control Optim. 34(3) (1996), 813–832.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Rosenthal. On dynamic feedback compensation and compactification of systems. SIAM J. Control Optim. 32(1) (1994), 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Rosenthal, J. M. Schumacher, and J. C. Willems. Generic eigenvalue assignment by memoryless real output feedback. Systems & Control Letters. 26 (1995), 253–260.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Rosenthal and X. Wang. Output feedback pole placement with dynamic compensators. IEEE Trans. Automat. Contr. 41(6) (1996), 830–843.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Schubert. Kalkühl der abzählenden Geometrie. Leipzig: Teubner, 1879.

    Google Scholar 

  35. H. Schubert. Anzahlbestimmung für lineare Räume beliebiger Dimension. Acta Math. 8 (1886), 97–118.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. A. Shayman. Phase portrait of the matrix Riccati equation. SIAM J. Control Optim. 24(1) (1986), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. C. Thompson. High, low, and quantitative roads in linear algebra. Linear Algebra Appl. 162/164 (1992), 23–64.

    Article  Google Scholar 

  38. X. Wang. Pole placement by static output feedback. Journal of Math. Systems, Estimation, and Control. 2(2) (1992), 205–218.

    Google Scholar 

  39. X. Wang. Grassmannian, central projection and output feedback pole assignment of linear systems. IEEE Trans. Automat. Contr. 41(6) (1996), 786–794.

    Article  MATH  Google Scholar 

  40. J. C. Willems. Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control. AC-36(3) (1991), 259–294.

    Article  MathSciNet  Google Scholar 

  41. J. C. Willems. On interconnections, control and feedback. Submitted to IEEE AC, July 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Rosenthal, J., Wang, X.A. (1997). Inverse Eigenvalue Problems for Multivariable Linear Systems. In: Byrnes, C.I., Datta, B.N., Martin, C.F., Gilliam, D.S. (eds) Systems and Control in the Twenty-First Century. Systems & Control: Foundations & Applications, vol 22. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-4120-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4120-1_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-8662-2

  • Online ISBN: 978-1-4612-4120-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics