A New Focus on Cytoskeletal Therapy in Alzheimer’s Disease

  • Hugo Geerts
  • Rony Nuydens
  • Mirjam de Jong
  • Gerd van de Kieboom
Part of the Advances in Alzheimer Disease Therapy book series (AADT)


The classical approach to Alzheimer’s Disease (AD) starts from the neuropathological findings and assumes any reasonable model should at least incorporate either β-amyloid plaques or neurofibrillary tangles. However, these neuropathological features are just tombstones of a disease process going on for several years. In the absence of specific and sensitive imaging markers for these aberrant protein forms, we will not be able to judge properly on their relevance to the course of the pathology per se.


Nerve Growth Factor Axonal Transport Okadaic Acid Sodium Butyrate Fast Axonal Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt T et al. (1995): PHF-like phosphorylation of tau, deposition of βA4 amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neurosci 69, 691–698.CrossRefGoogle Scholar
  2. Braak H and Braak E (1992): Neuropathological staging of Alzheimer-relatedchanges. Acta Neuropath. 82: 239–259.CrossRefGoogle Scholar
  3. Bredesen D (1995): Neural apoptosis. Ann Neurol 38, 839–851.PubMedCrossRefGoogle Scholar
  4. Burke W, Park D, Chung H, Marshall G, Haring J, Joh T (1990): Evidence of decreased transport of tryptophan hydroxylase in Alzheimer’s disease. Brain Res 537: 83–87.PubMedCrossRefGoogle Scholar
  5. Callahan L, Coleman P (1995): Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer’s Disease. Neurobiol of Aging 16:311–314.CrossRefGoogle Scholar
  6. Coleman P, Flood D (1987): Neuron numbers and dendritic extent in normal agingand Alzheimer’s disease. Neurobiol of Aging, 8:521–545.CrossRefGoogle Scholar
  7. Gong C, Singh T, Grundke I, Iqbal K (1993): Phosphoprotein phosphatase activities inAlzheimer Disease Brain. J, of Neurochemistry 61: 921–927.CrossRefGoogle Scholar
  8. Hammerschlag R. and Bobinski J. (1992): Does nerve impulse activity modulate fastaxonal transport? Molec Neurobiol 6:191–201.CrossRefGoogle Scholar
  9. Iqbal K, Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, and Wisniewski HM (1986): Defective brain microtubule assembly in Alzheimer’s disease. Lancet. 2:421–426PubMedCrossRefGoogle Scholar
  10. Kawahima M Morishima-, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995): Proline-directed and non-proline directed phosphorylation of PHF-tau. Journ Biol Chem 270:823–829.CrossRefGoogle Scholar
  11. Kawarabayashi T, Shojii M, Yamaguchi H, Yanaka M, Harigaya Y, Ishiguro K, Hirai S (1993): Amyloid β-protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 153 73–76.PubMedCrossRefGoogle Scholar
  12. La Ferla F, Tinkle B, Bieberich C, Huadenschild C and Jay G (1995): The Alzheimer Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mic e. Nature Genet 9:21–29.CrossRefGoogle Scholar
  13. Lassmann H, Weiler R, Fischerm P, Bancher C, Jellinger K, Floor E, Danielczyk W, Seitelberger F, Winkler H (1992): Synaptic pathology in Alzheimer’s disease: Immunological data for markers of synaptic and large dense-core vesicles. Neuroscience 46:1–8.PubMedCrossRefGoogle Scholar
  14. Lee V, Daughenbaugh R, Trojanowski J (1994): Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol Aging 15:s2, S87-S89.PubMedCrossRefGoogle Scholar
  15. Moechars D, Lorent K, De Strooper B, Dewachter I, van Leuven F (1996): Expression in brain of APP mutated in the α-secretase site, causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBOJ, in press.Google Scholar
  16. Moran P, Higgins L, Cordell B, Moser P. (1995): Age-related learnig deficits in transgenic mice expressing the 751-amino acid isoform of human β-amyloid precursor protein. Proc Natl Acad Sci USA 92:5341–5345.PubMedCrossRefGoogle Scholar
  17. Mufson E, Conner J, and Kordower J (1995): Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. NeuroReport 6:1063–1066PubMedCrossRefGoogle Scholar
  18. Nikolic M, Delalle I, Tsai L (1995): The role of p35/cdk5 kinase in neuronal differentiation and neurite outgrowth. Soc Neurosci Abst, 21. part 3, p2001Google Scholar
  19. Nuydens R., De Jong M., Nuyens R., Cornelissen F, Geerts H (1996): Aberrant tau phosphorylation decreases fast axonal transport. (Submitted).Google Scholar
  20. Prapotnik D, Smith M, Richey P, Vinters H, Perry G (1996): Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol 91:226–235.CrossRefGoogle Scholar
  21. Richard S, Brion JP, Couck AM, Flament-Durand J (1985): Accumulation of smooth endoplasmic reticulum in Alzheimer’s disease: new morphological evidence of axoplasmic flow disturbances. J. Submicr. Cytol Pathol 21:461–465.Google Scholar
  22. Scott S, Mufson E, Weingartner J, Skau K, Crutcher K (1995): Nerve Growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in Nucleus basalis. Journ Neurosci 15:6213–6221.Google Scholar
  23. Vito P, Lacana E, d’Adamio L (1996): Interfering with apoptosis: Ca-binding protein ALG-3 and Alzheimer’s disease gene ALG-3. Science 271:521–524.PubMedCrossRefGoogle Scholar
  24. Wolfe N, Reed B, Eberling J, Jagust W (1995): Temporal lobe perfusion on SPECT predicts the rate of cognitive decline in Alzheimer’s disease. Arch Neurol 52:257- 262.PubMedGoogle Scholar
  25. Zheng Y, Jiang M, Trumbauer M, Sirinathsinghji D, Hopkins R, Smith D, Heavens R, Dawson G, Boyce S, Connor M, Stevens K, Slunt H, Sisodia S, Chen H, Van der Ploeg L (1995): β-amyloid precursor protein deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Hugo Geerts
    • 1
  • Rony Nuydens
    • 1
  • Mirjam de Jong
    • 1
  • Gerd van de Kieboom
    • 1
  1. 1.Dept Cellular PhysiologyJanssen Research FoundationBeerseBelgium

Personalised recommendations