Skip to main content

Antidiabetic characteristics of dehydroepiandrosterone in animal and human studies

  • Chapter
Lessons from Animal Diabetes VI

Part of the book series: Rev.Ser.Advs.Research Diab.Animals (Birkhäuser) ((RSARDA,volume 6))

  • 109 Accesses

Abstract

Interest in dehydroepiandrosterone (DHEA) as a metabolic factor involved with diabetes in relation to obesity dates back to a study published by Šonka and coworkers1 30 years ago. They reported that no DHEA was detected in the urine of 27 of 32 elderly obese diabetic subjects. This and other studies led Šonka2 to the speculation that DHEA, a 17-ketosteroid produced in the adrenal gland, may have important regulatory functions in the body. Since these early observations were made, ameliorative effects resulting from the administration of DHEA were obtained in numerous studies. Most studies have used mice and rats, but additional work has been presented in dogs, monkeys, rabbits, and humans. An array of effects was attributed to DHEA treatment, including prevention of cancer, aging, obesity, viral diseases, and atherosclerosis.3–6 Following in Šonka’s path there have also been further investigations into the role of DHEA as an antidiabetic agent. My overview of the literature is pertinent to this potential characteristic of DHEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Šonka J, Gregorova I, Pav J, Skrha F. Dehydroepiandrosterone in obese diabetics. Lancet 2:44–5, 1964.

    Google Scholar 

  2. Šonka J. Dehydroepiandrosterone metabolic effects. Acta Univ Carol Med Monogr 71:1–171, 1976.

    PubMed  Google Scholar 

  3. Kalimi M, Regelson W. The biologic role of dehydroepiandrosterone (DHEA). Walter de Gruyter, New York, 1990.

    Google Scholar 

  4. Gordon GB, Schantz LM, Talalay P. Modulation of growth, differentiation and carcinogenesis by dehydroepiandrosterone. Adv Enzyme Regul 26:355–82, 1987.

    PubMed  CAS  Google Scholar 

  5. Cleary MP. The antiobesity effect of dehydroepiandrosterone in rats. Proc Soc Exp Biol Med 196:8–16, 1991.

    PubMed  CAS  Google Scholar 

  6. Berdanier CD, Parente JA Jr, Mcintosh MK. Is dehydroepiandrosterone an antiobesity agent? FASEB J 7:414–9, 1993.

    PubMed  CAS  Google Scholar 

  7. Yen TT, Allan JA, Pearson DV, Acton JM. Prevention of obesity in Avy/a mice by dehydroepiandrosterone. Lipids 12:409–13, 1977.

    PubMed  CAS  Google Scholar 

  8. Schwartz AG. Inhibition of spontaneous breast cancer formation in female C3H (Avy/a) mice by long term treatment with dehydroepiandrosterone. Cancer Res 39:1129–32, 1979.

    PubMed  CAS  Google Scholar 

  9. Weindruch R, Meetus G, Walford RL. Food intake reduction and immunologic alterations in mice fed dehydroepiandrosterone. Exp Gerontol 19:297–304, 1984.

    PubMed  CAS  Google Scholar 

  10. Cleary MP, Seidenstat R, Tannen RH, Schwartz AG. The effect of dehydroepiandrosterone on adipose tissue cellularity in mice. Proc Soc Exp Biol Med 171:276–84, 1982.

    PubMed  CAS  Google Scholar 

  11. Granholm NH, Staber LD, Wilken PJ. Effects of dehydroepiandrosterone on obesity and glucose-6-phosphate dehydrogenase activity in the lethal yellow mouse (strain 129/Sv-Ay/Aw). J Exp Zool 242:67–74, 1987.

    PubMed  CAS  Google Scholar 

  12. Pashko LL, Fairman DK, Schwartz AG. Inhibition of proteinuria development in aging Sprague-Dawley rats and C57BL/6 mice by long-term treatment with dehydroepiandrosterone. J Gerontol 41:433–8, 1986.

    PubMed  CAS  Google Scholar 

  13. Coleman DL, Leiter EH, Schwizer RW. Therapeutic effects of dehydroepiandrosterone (DHEA) in diabetic mice. Diabetes 31:830–3, 1982.

    PubMed  CAS  Google Scholar 

  14. Coleman DL, Schwizer RW, Leiter EH. Effect of genetic background on the therapeutic effects of dehydroepiandrosterone (DHEA) in diabetes-obesity mutants and in aged normal mice. Diabetes 33:26–32, 1984.

    PubMed  CAS  Google Scholar 

  15. Coleman DL, Leiter EH, Applezweig N. Therapeutic effects of dehydroepiandrosterone metabolites in diabetes mutant mice (C56BL/K-db/db). Endocrinology 115:239–43, 1984.

    PubMed  CAS  Google Scholar 

  16. Coleman DL. Antiobesity effects of etiocholanolones in diabetes (db), viable yellow (Avy), and normal mice. Endocrinology 117:2279–83, 1985.

    PubMed  CAS  Google Scholar 

  17. Leiter EH, Beamer WG, Coleman DL, Longcope C. Androgenic and estrogenic metabolites in serum of mice fed dehydroepiandrosterone: Relationship to antihyperglycemic effects. Metabolism 36:863–9, 1987.

    PubMed  CAS  Google Scholar 

  18. Beamer WG, Shultz KL, Tennent BJ. Induction of ovarian granulosa cell tumors in SWXJ-9 mice with dehydroepiandrosterone. Cancer Res 48:2788–92, 1988.

    PubMed  CAS  Google Scholar 

  19. Tennent BJ, Shultz KL, Beamer WG. Genetic susceptibility for C19 androgen induction of ovarian granulosa cell tumorigenesis in SWXJ strains of mice. Cancer Res 53:1059–63, 1993.

    PubMed  CAS  Google Scholar 

  20. Schwartz AG, Lewbart ML, Pashko LL. Novel dehydroepiandrosterone analogues with enhanced biological activity and reduced side effects in mice and rats. Cancer Res 48:4817–22, 1988.

    PubMed  CAS  Google Scholar 

  21. Pashko LL, Schwarz AG. Antihyperglycemic effect of dehydroepiandrosterone analogue 16±-fluoro-5-androsten-17-one in diabetic mice. Diabetes 42:1105–8, 1993.

    PubMed  CAS  Google Scholar 

  22. Cleary MP, Shepherd A, Jenks B. Effect of dehydroepiandrosterone on growth in lean and obese Zucker rats. J Nutr 114:1242–51, 1984.

    PubMed  CAS  Google Scholar 

  23. Shepherd A, Cleary MP. Metabolic alterations due to dehydroepiandrosterone in the obese Zucker rat. Am J Physiol 246:E123–8, 1984.

    PubMed  CAS  Google Scholar 

  24. Cleary MP, Billheimer J, Finan A, et al. Metabolic consequences of dehydroepiandrosterone in lean and obese adult Zucker rats. Horm Metab Res 16(Suppl 1):43–6, 1984.

    PubMed  Google Scholar 

  25. Cleary MP, Zisk JR. Antiobesity effect of two different levels of dehydroepiandrosterone treatment in lean and obese middle-aged female Zucker rats. Int J Obes 10:193–204, 1986.

    PubMed  CAS  Google Scholar 

  26. Muller S, Cleary MP. Glucose metabolism in isolated adipocytes from lean and obese Zucker rats following treatment with dehydroepiandrosterone. Metabolism 34:278–84, 1985.

    PubMed  CAS  Google Scholar 

  27. Svec F, Hilton CW, Wright B, et al. The effect of DHEA given chronically to Zucker rats. Proc Soc Exp Biol Med 209:92–7, 1995.

    PubMed  CAS  Google Scholar 

  28. Gansler TS, Muller S, Cleary MP. Chronic administration of dehydroepiandrosterone (DHEA) reduces pancreatic b-cell hyperplasia and hyperinsulinemia in genetically obese rats. Proc Soc Exp Biol Med 180:155–62, 1985.

    PubMed  CAS  Google Scholar 

  29. Cleary MP, Zabel T, Sartin JL. Effects of short-term dehydroepiandrosterone treatment on serum and pancreatic insulin in Zucker rats. J Nutr 118:382–7, 1988.

    PubMed  CAS  Google Scholar 

  30. Mohan PF, Cleary MP. Comparisons of dehydroepiandrosterone and clofrbric acid treatments in obese Zucker rats. J Nutr 119:496–501, 1989.

    PubMed  CAS  Google Scholar 

  31. Hayek A, Woodside W. Correlation between morphology and function in isolated islets of the Zucker rat. Diabetes 28:565–9, 1979.

    PubMed  CAS  Google Scholar 

  32. Cleary MP. Effect of dehydroepiandrosterone treatment on liver metabolism in rats. Int J Biochem 22:305–10, 1990.

    Google Scholar 

  33. Marks PA, Banks J. Inhibition of mammalian glucose-6-phosphate dehydrogenase by steroid hormones. Proc Natl Acad Sci USA 46:447–52, 1960.

    PubMed  CAS  Google Scholar 

  34. Oertel GW, Benes P. The effects of steroids on glucose-6-phosphate dehydrogenase. J Steroid Biochem 3:493–6, 1972.

    PubMed  CAS  Google Scholar 

  35. Beitner R, Naor Z. The effect of adenine nucleotides and dehydroepiandrosterone on the isoenzymes of NADP+-and NAD+-glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from rat adipose tissue. Biochim Biophys Acta 286:437–40, 1972.

    PubMed  CAS  Google Scholar 

  36. Hissin PJ, Foley JE, Wardzala LJ, et al. Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. Relative depletion of intracellular glucose transport systems. J Clin Invest 70:780–90, 1982.

    PubMed  CAS  Google Scholar 

  37. Richardson DK, Czech MP. Diminished activities of fatty acid synthesis enzymes in insulin-resistant adipocytes from spontaneously obese rats. Horm Metab Res 11:427–31, 1979.

    PubMed  CAS  Google Scholar 

  38. Olefsky JM. The effect of spontaneous obesity on insulin binding, glucose transport and glucose oxidation of isolated rat adipocytes. J Clin Invest 57:842–51, 1976.

    PubMed  CAS  Google Scholar 

  39. Mohan PF, Ihnen JS, Levin BE, Cleary MP. Effects of dehydroepiandrosterone treatment in rats with diet-induced obesity. J Nutr 120:1103–14, 1990.

    PubMed  CAS  Google Scholar 

  40. Berdanier CD. The BHE rat: An animal model for the study of noninsulin-dependent diabetes mellitus. FASEB J 5:2139–4, 1991.

    PubMed  CAS  Google Scholar 

  41. McIntosh MK, Berdanier CD. Antiobesity effects of dehydroepiandrosterone are mediated be futile substrate cycling in hepatocytes of BHE/cdb rats. J Nutr 121:2037–13, 1991.

    PubMed  CAS  Google Scholar 

  42. Roy S, Mahesh VB, Greenblatt RB. Effect of dehydroepiandrosterone and D4-an-drostenedione on the reproductive organ of female rats; production of cystic changes in the ovary. Nature 196:2–5, 1962.

    Google Scholar 

  43. Parker CR, Mahesh VB. Interrelationship between excessive levels of circulatory androgens in the blood and ovulatory failure. J Reprod Med 17:75–90, 1976.

    PubMed  CAS  Google Scholar 

  44. Lee M-T, Anderson E, Lee GY. Changes in ovarian morphology and serum hormones in the rat after treatment with dehydroepiandrosterone. Anat Rec 231:185–92, 1991.

    PubMed  CAS  Google Scholar 

  45. Nestler JE, Barlascini CO, Clore JN, Blackard WG. Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocr Metab 66:57–61, 1988.

    PubMed  CAS  Google Scholar 

  46. Usiskin KB, Butterworth S, Clore JN, et al. Lack of effect of dehydroepiandrosterone in obese men. Int J Obes 14:457–63, 1990.

    PubMed  CAS  Google Scholar 

  47. Mortola JF, Yen SSC. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocr Metab 71:696–704, 1990.

    PubMed  CAS  Google Scholar 

  48. Casson PR, Faquin CC, Stentz FB, et al. Replacement of dehydroepiandrosterone enhances T-lymphocyte insulin binding in postmenopausal women. Fertil Steril 63:1027–31, 1995.

    PubMed  CAS  Google Scholar 

  49. Morales AJ, Nolan JJ, Nelson JC, Yen SSC. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J Clin Endocr Metab 78:1360–67, 1994.

    PubMed  CAS  Google Scholar 

  50. Zumoff B, Strain GW, Heymsfield SB, Lichtman S. A randomized double-blind crossover study of the antiobesity effects of etiocholanedione. Obes Res 2:13–8, 1994.

    PubMed  CAS  Google Scholar 

  51. Buffington CK, Pourmotabbed G, Kitabchi AE. Case report: Amelioration of insulin resistance in diabetes with dehydroepiandrosterone. Am J Med Sci 306:320–4, 1993.

    PubMed  CAS  Google Scholar 

  52. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocr Metab 59:551–5, 1984.

    PubMed  CAS  Google Scholar 

  53. Carlstrom K, Brody S, Lunell NO, et al. Dehydroepiandrosterone sulphate and dehydroepiandrosterone in serum: Differences related to age and sex. Maturitas 10:297–306, 1988.

    PubMed  CAS  Google Scholar 

  54. Orentreich N, Brind JL, Vogelnab JH, et al. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocr Metab 75:1002–4, 1992.

    PubMed  CAS  Google Scholar 

  55. Parker LN. Adrenal androgens in clinical medicine. Academic Press, San Diego pp 118–34, 1989.

    Google Scholar 

  56. Ebeling P, Koivisto VA. Physiological importance of dehydroepiandrosterone. Lancet 343:1479–81, 1994.

    PubMed  CAS  Google Scholar 

  57. Nafziger AN, Herrington DM, Bush TL. Dehydroepiandrosterone and dehydroepiandrosterone sulfate: Their relationship to cardiovascular disease. Epidem Rev 13:267–93, 1991.

    CAS  Google Scholar 

  58. Nestler JE, Mlanahan MA. Diabetes and adrenal disease. Balliere’s Clin Endocr Metab 6:829–7, 1992.

    CAS  Google Scholar 

  59. Nestler JE, Clore JN, Blackard WG. Dehydroepiandrosterone: The “missing link” between hyperinsulinemia and atherosclerosis. FASEB J 6:3073–75, 1992.

    PubMed  CAS  Google Scholar 

  60. Barrett-Connor E, Khaw KT, Yen SSC. A prospective study of dehydroepiandrosterone sulfate, mortality, and cardiovascular disease. N Engl J Med 315:1519–24, 1986.

    PubMed  CAS  Google Scholar 

  61. Khaw KT, Barrett-Connor E. Fasting plasma glucose and endogenous androgens in non-diabetic postmenopausal women. Clin Sci 80:199–203, 1991.

    PubMed  CAS  Google Scholar 

  62. Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann Intern Med 117:807–11, 1992.

    PubMed  CAS  Google Scholar 

  63. Herrington DM, Gordon GB, Achuff SC, et al. Plasma dehydroepiandrosterone sulfate in patients undergoing diagnostic coronary angiography. J Am Coll Cardiol 16:862–70, 1990.

    PubMed  CAS  Google Scholar 

  64. Nyholm H, Djursing H, Hagen C, et al. Androgens and estrogens in postmenopausal insulin-treated diabetic women. J Clin Endocr Metab 69:946–9, 1989.

    PubMed  CAS  Google Scholar 

  65. Szpunar WE, Blair AJ, Mann DS. Plasma androgen concentrations in diabetic women. Diabetes 26:1125–29, 1977.

    PubMed  CAS  Google Scholar 

  66. Remer T, Pietrzik K. Chronic insulin treatment, but not chronic ACTH administration increases plasma dehydroepiandrosterone sulfate levels in adolescent male rats. Exp Clin Endocr 101:222–9, 1993.

    CAS  Google Scholar 

  67. Dlue TJ, Shah SC, Marchese M, Malone JI. Insulin resistance and hyperinsulinemia induce hyperandrogenism in a young type B insulin-resistant female. J Clin Endocr Metab 72:1308–11, 1991.

    Google Scholar 

  68. Chang RJ, Nakamura RM, Judd HL, Kaplan SA. Insulin resistance in nonobese patients with polycystic ovarian disease. J Clin Endocr Metab 57:356–9, 1983.

    PubMed  CAS  Google Scholar 

  69. Shoupe D, Kumar DD, Lobo RA. Insulin resistance in polycystic ovarian syndrome. Am J Obstet Gynecol 147:588–92, 1983.

    PubMed  CAS  Google Scholar 

  70. Smith S, Ravnikar VA, Barbieri RL. Androgen and insulin response to an oral glucose challenge in hyperandrogenic women. Fertil Steril 48:72–7, 1987.

    PubMed  CAS  Google Scholar 

  71. Vidal-Puig A, Munoz-Torres M, Jodar-Gimeno E, et al. Hyperinsulinemia in polycystic ovary syndrome: Relationship to clinical and hormonal factors. Clin Invest 72:853–7, 1994.

    CAS  Google Scholar 

  72. Falcone T, Finegood DT, Fantu G, Morris D. Androgen response to endogenous insulin secretion during the frequently sampled intravenous glucose test in normal and hyperandrogenic women. J Clin Endocr Metab 71:1653–57, 1990.

    PubMed  CAS  Google Scholar 

  73. Farah MJ, Givens JR, Kitabchi AE. Bimodal correlation between circulating insulin level and production of rate of dehydroepiandrosterone: Positive correlation in controls and negative correlation in polycystic ovary syndrome with acanthosis nigricans. J Clin Endocr Metab 70:1075–81, 1990.

    PubMed  CAS  Google Scholar 

  74. Tropeano G, Lucisano A, Liberale I, et al. Insulin, C-peptide, androgens, and b-endorphin response to oral glucose in patients with polycystic ovary syndrome. J Clin Endocr Metab 78:305–9, 1994.

    PubMed  CAS  Google Scholar 

  75. Azziz R, Bradley EL, Potter HD, et al. Chronic hyperinsulinemia and the adrenal androgen response to acute corticotrophin-(1–24) stimulation in hyperandrogenic women. Am J Obstet Gynecol 172:1251–56, 1995.

    PubMed  CAS  Google Scholar 

  76. Toscano V, Bianchi P, Balducci R, et al. Lack of linear relationship between hyperinsulinemia and hyperandrogenism. Clin Endocr 36:197–207, 1992.

    PubMed  CAS  Google Scholar 

  77. Buffington CK, Givens JR, Kitabchi AE. Opposing actions of dehydroepiandrosterone and testosterone on insulin sensitivity. In vivo and in vitro studies in hyperandrogenic females. Diabetes 40:693–700, 1991.

    PubMed  CAS  Google Scholar 

  78. Dunaif A, Graf M, Mandeli J, et al. Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose intolerance, and/or hyperinsulinemia. J Clin Endocr Metab 65:499–507, 1987.

    PubMed  CAS  Google Scholar 

  79. Schriock ED, Buffington CK, Hubert GD, et al. Divergent correlations of circulating dehydroepiandrosterone and insulin receptor sulfate and testosterone with insulin levels binding. J Clin Endocr Metab 66:1329–31, 1988.

    PubMed  CAS  Google Scholar 

  80. Buffington CK, Givens JR, Kitabchi AE. Enhanced adrenocortical activity as a contributing factor to diabetes in hyperandrogenic women. Metabolism 43:584–90, 1994.

    PubMed  CAS  Google Scholar 

  81. Schriock ED, Buffington CK, Givens JR, Buster JE. Enhanced post-receptor insulin effects following dehydroepiandrosterone infusion. J Soc Gynecol Invest 1:74–8, 1994.

    CAS  Google Scholar 

  82. Diamanti-Kandarakis E, Mitrakou A, Hennes MMI, et al. Insulin sensitivity and antiandrogenic therapy in women with polycystic ovary syndrome. Metabolism 44:525–31, 1995.

    PubMed  CAS  Google Scholar 

  83. Vidal-Puig A, Muñoz-Torres M, Garcia-Calvente C, et al. Reduction of endogenous, ovarian and adrenal androgens with ketoconazole does not alter insulin response in the polycystic ovary syndrome. J Endocr Invet 17:647–52, 1994.

    CAS  Google Scholar 

  84. Weiss DJ, Charles MA, Dunaif A, et al. Hyperinsulinemia is associated with menstrual irregularity and altered serum androgens in Pima Indian women. Metabolism 43:803–7, 1994.

    PubMed  CAS  Google Scholar 

  85. Dergola G, Giagulli VA, Garruti G. Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index. Metabolism 40:187–90, 1991.

    Google Scholar 

  86. Haffner SM, Valdez RA, Mykkanen L, et al. Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in diabetic men. Metabolism 43:599–603, 1994.

    PubMed  CAS  Google Scholar 

  87. Phillips GB. Relationship between serum sex hormones and the glucose-insulin-lipid defect in men with obesity. Metabolism 42:116–20, 1993.

    PubMed  CAS  Google Scholar 

  88. Pasquali R, Casimirri F, Cantobelli S, et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism 40:101–4, 1991.

    PubMed  CAS  Google Scholar 

  89. Herranz L, Megia A, Grand C, et al. Dehydroepiandrosterone sulphate, body fat distribution and insulin in obese men. Int J Obes 19:57–60, 1995.

    CAS  Google Scholar 

  90. Haffner SM, Valdez RA, Stern MP, Katz MS. Obesity, body fat distribution and sex hormones in men. Int J Obes 17:643–9, 1993.

    CAS  Google Scholar 

  91. Tchernof A, Deprés J-P, Bélanger A, et al. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 44:513–19, 1995.

    PubMed  CAS  Google Scholar 

  92. Tchernof A, Després J-P, Dupont A, et al. Relation of steroid hormones to glucose tolerance and plasma insulin levels in men. Diabetes Care 18:292–9, 1995.

    PubMed  CAS  Google Scholar 

  93. Parker LN. Adrenal androgens in clinical medicine. Academic Press, San Diego p 615, 1989.

    Google Scholar 

  94. Zumoff P, Rosenfeld GW, Strain GW. Sex difference in twenty-four hour mean plasma concentrations of dehydroepiandrosterone (DHA) and dehydroepiandrosterone sulfate (DHAS) and the DHA to DHAS ratio in normal adults. J Clin Endocr Metab 51:330–3, 1980.

    PubMed  CAS  Google Scholar 

  95. Nestler JE, Kahwash Z. Sex-specific action of insulin to acutely increase the metabolic clearance rate of dehydroepiandrosterone in humans. J Clin Invest 94: 1484–89, 1994.

    PubMed  CAS  Google Scholar 

  96. Haning RV Jr, Carlson IH, Rood CA, et al. Metabolism of dehydroepiandrosterone sulfate (DS) in normal women and women with high DS concentrations. J Clin Endocetab 73:1210–15, 1991.

    CAS  Google Scholar 

  97. Nestler JE, Clore JN, Strauss III JF, Blackard WG. The effects of hyperinsulinemia on serum testosterone, progesterone, dehydroepiandrosterone sulfate, and Cortisol in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J Clin Endocr Metab 64:180–4, 1987.

    PubMed  CAS  Google Scholar 

  98. Nestler JE, Usiskin KS, Barlascini CO, et al. Suppression of serum dehydroepiandrosterone sulfate levels by insulin: An evaluation of possible mechanisms. J Clin Endocr Metab 69:1040–46, 1989.

    PubMed  CAS  Google Scholar 

  99. Ebeling P, Stenman U-H, Seppälä M, Koivisto VA. Acute hyperinsulinemia, androgen homeostasis and insulin sensitivity in healthy men. J Endocrinol 146:63–9, 1995.

    PubMed  CAS  Google Scholar 

  100. Diamond MP, Grainger DA, Laudano AJ, et al. Effect of acute physiological elevation of insulin on circulating androgen levels in nonobese women. J Clin Endocr Metab 72:883–7, 1991.

    PubMed  CAS  Google Scholar 

  101. Hubert GD, Schriock ED, Givens JR, Buster JE. Suppression of circulating A4-androstenedione and dehydroepiandrosterone sulfate during oral glucose tolerance test in normal females. J Clin Endocr Metab 73:781–1, 1991.

    PubMed  CAS  Google Scholar 

  102. Buyalos RP, Bradley EL, Judd HL, et al. No acute effect of physiological insulin increase on dehydroepiandrosterone sulfate in women with obesity and/or polycystic ovarian disease. Fertil Steril 56:1179–82, 1991.

    PubMed  CAS  Google Scholar 

  103. Nestler JE, Mlanahan MA, Clore JN, et al. Insulin inhibits 17, 20-lyase activity in man. J Clin Endocr Metab 74:362–7, 1992.

    PubMed  CAS  Google Scholar 

  104. Beer NA, Jakubowicz DJ, Beer RM, et al. Effects of nitrendipine on glucose tolerance and serum insulin and dehydroepiandrosterone sulfate levels in insulin-resistant obese and hypertensive men. J Clin Endocr Metab 76:178–83, 1993.

    PubMed  CAS  Google Scholar 

  105. Beer NA, Jakubowicz DJ, Beer RM, Nestler JE. The calcium blocker amlodipine raises serum dehydroepiandrosterone sulfate and androstenedione, but lowers serum Cortisol, in insulin-resistant obese and hypertensive men. J Clin Endocr Metab 76:1464–69, 1993.

    PubMed  CAS  Google Scholar 

  106. Nester JE, Barlascini CO, Matt DW, et al. Suppression of serum insulin by diazoxide reduces serum testosterone level in obese women with polycystic ovary syndrome. J Clin Endocr Metab 68:1027–31, 1989.

    Google Scholar 

  107. Beer NA, Jakubowicz DJ, Beer RM, Nestler JE. Disparate effects on insulin reduction with diltiazem on serum dehydroepiandrosterone sulfate in obese hypertensive men and women. J Clin Endocr Metab 79:1077–81, 1994.

    PubMed  CAS  Google Scholar 

  108. Nestler JE, Beer NA, Jakubowicz DJ, Beer RM. Effects of a reduction in circulating insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic men. J Clin Endocr Metab 78:549–54, 1994.

    PubMed  CAS  Google Scholar 

  109. Nestler JE, Beer NA, Jakubowicz DJ, et al. Effects of insulin reduction with ben-fluorex on serum dehydroepiandrosterone (DHEA), DHEA sulfate and blood pressure in hypertensive middle-aged and elderly men. J Clin Endocr Metab 80:700–6, 1995.

    PubMed  CAS  Google Scholar 

  110. Björntorp P. Hyperandrogenicity in women—a prediabetic condition. J Intern Med 234:579–83, 1993.

    PubMed  Google Scholar 

  111. Stuart CA, Prince MJ, Peters EJ, Meyer WJ. Hyperinsulinemia and hyperandrogenemia: In vivo androgen response to insulin infusion. Obstet Gynecol 69:921–5, 1987.

    PubMed  CAS  Google Scholar 

  112. van Weerden WM, Biering HG, van Steenbrugge GJ, et al. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci 50:857–61, 1992.

    PubMed  Google Scholar 

  113. Bélanger B, Bélanger A, Labrie F, et al. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: Unique importance of extratesticular androgens in men. J Steroid Biochem 32:695–8, 1989.

    PubMed  Google Scholar 

  114. Edery M, Carreau S, Simon M-J, Drowdowsky MA. In vitro pregnenolone metabolism by mouse adrenal gland: II—biosynthesis of androgens. Steroids 39:191–200, 1982.

    PubMed  CAS  Google Scholar 

  115. Ando S, Aquila S, Beraldi E, et al. Physiological changes in androgen plasma levels with elapsing of time from castration in adult male rats. Horm Metab Res 20:96–9, 1988.

    PubMed  CAS  Google Scholar 

  116. Nakashima N, Haji M, Sakai Y, et al. Effecy of dehydroepiandrosterone on glucose uptake in cultured human fibroblasts. Metabolism 44:543–8, 1995.

    PubMed  CAS  Google Scholar 

  117. Lardy H, Partridge B, Kneer N, Wei Y. Ergosteroids: Induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone. Proc Natl Acad Sci USA 92:6617–19, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Cleary, M.P. (1996). Antidiabetic characteristics of dehydroepiandrosterone in animal and human studies. In: Shafrir, E. (eds) Lessons from Animal Diabetes VI. Rev.Ser.Advs.Research Diab.Animals (Birkhäuser), vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4112-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4112-6_20

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8658-5

  • Online ISBN: 978-1-4612-4112-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics