Skip to main content

Transgenic hyperinsulinemia: A mouse model of insulin resistance and glucose intolerance without obesity

  • Chapter
Lessons from Animal Diabetes VI

Part of the book series: Rev.Ser.Advs.Research Diab.Animals (Birkhäuser) ((RSARDA,volume 6))

Abstract

Type II diabetes represents the most common form of diabetes in humans and is a major cause of morbidity and mortality.1In any individual patient, the primary metabolic abnormality initiating this disease process remains elusive, in spite of extensive study of the human condition and multiple animal models.2–5 Most of these models share several features with human type II diabetes, including glucose intolerance associated with hyperinsulinemia, insulin resistance, and obesity. We describe here transgenic mice that represent a novel model of early type II diabetes. They share many physiologic characteristics with other rodent models of type II diabetes, but they are not obese. They are not the result of a poorly defined mutation that may cause extensive abnormalities beyond those seen in glucose homeostasis, and they are not the result of surgical or pharmacologic manipulation. The metabolic abnormalities seen in these transgenics result from the introduction of multiple copies of the normal human insulin gene into their genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shafrir E, Bergman M, Felig P. The endocrine pancreas: Diabetes mellitus. In: Endocrinology and metabolism. Felig P, Baxter JD, Broadus AE, Frohman LA, eds. McGraw-Hill, New York, 1987, pp 1043–1178.

    Google Scholar 

  2. Herberg L, Coleman DL. Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99, 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Mordes JP, Rossini AA. Animal models of diabetes. In: Joslin’s diabetes mellitus. Marble A, Krall LP, Bradley RF, Christlieb AR, Soeldner JS, eds. Lea & Febiger, Philadelphia, 1985. pp. 110–137.

    Google Scholar 

  4. Coleman DL. Obesity and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–8, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman DL. Diabetes-obesity syndromes in mice. Diabetes 31:1–6, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Marbán SL, DeLoia JA, Gearhart JD: Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Dev Genet 10:356–64, 1989.

    Article  PubMed  Google Scholar 

  7. Walker MD, Edlund T, Boulet AM, Rutter WJ: Cell-specific expression controlled by the 5’ flanking region of insulin and chymotrypsin genes. Nature 306:557–61, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D. Heritable formation of pancreaticβ-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–22, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Karlsson O, Edlund T, Moss JB, et al. A mutational analysis of the insulin gene transcriptional control region: Expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci USA 84:8819–23, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Crowe DT, Tsai MJ: Mutagenesis of the rat insulin II 5’-flanking region defines sequences important for expression in HIT cells. Mol Cell Biol 9:1784–89, 1989.

    PubMed  CAS  Google Scholar 

  11. Fromont-Racine M, Bucchini D, Madsen O, et al. Effect of 5’-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol Endocrinol 4:669–77, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Johnson RN, Metcalf PA, Baker JR: Fructosamine: A new approach to the estimation of serum glycosylated protein. Clin Chim Acta 127:87–95, 1982.

    Article  Google Scholar 

  13. Glinkmanas G, Sarmini H, Bigorie B, et al. Evaluation of Roche fructosamine test: Use for diabetic patient monitoring. Clin Biochem 21:319–21, 1988.

    Article  Google Scholar 

  14. Larkins RG: Defective insulin secretory response to glucose in the New Zealand obese mouse. Diabetes 22:251–5, 1973.

    PubMed  CAS  Google Scholar 

  15. Green AA, Hughes WL. Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol 1:67–90, 1955.

    Article  CAS  Google Scholar 

  16. Heding LG. Radioimmunological determination of human C-peptide in serum. Diabetologia 11:541–8, 1975.

    Article  PubMed  CAS  Google Scholar 

  17. Kimmel JR, Hay den LJ, Pollock HC: Isolation and characterization of a new pancreatic polypeptide hormone. J Biol Chem 250:9369–76, 1975.

    PubMed  CAS  Google Scholar 

  18. Shuldiner AR, Bennet C, Robinson EA, Roth J: Isolation and characterization of two different insulins from an amphibianXenopus laevis.Endocrinology 125:469–77, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Raben N, Barbetti F, Cama A, et al. Normal coding sequence of insulin gene in Pima Indians and Nauruans, two groups with highest prevelance of type II diabetes. Diabetes 40:118–22, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Shemer J, Penhos JC, Loith D: Insulin receptors in lizard brain and liver: Structural and functional studies of α andβsubunits demonstrate evolutionary conservation. Diabetologia 29:321–9, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Shemer J, Ota A, Adamo M, LeRoith D: Insulin-sensitive tyrosine kinase is increased in livers of adult obese Zucker rats: Correlation with prolonged fasting. Endocrinology 123:140–8, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–9, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Dayhoff MO. Insulin amino acid sequences. Atlas Prot Sequence Structure 5:127–30, 1976.

    Google Scholar 

  24. Dayhoff MO. C-peptide amino acid sequences. Atlas Prot Sequence Structure 5:150–1, 1978.

    Google Scholar 

  25. Cefalu WT, Parker TB, Johnson CR: Validity of serum fructosamine as index of short-term glycemic control in diabetic outpatients. Diabetes Care 11:662–4, 1988.

    PubMed  CAS  Google Scholar 

  26. Baker JR, O’Connor JP, Metcalf PA, et al. Clinical usefulness of estimation of serum fructosamine concentration as a screening test for diabetes mellitus. Br Med J 287:863–7, 1983.

    Article  CAS  Google Scholar 

  27. Baker JR, Metcalf PA, Johnson RN, et al. Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550–54, 1985.

    PubMed  CAS  Google Scholar 

  28. Adams TE, Alpert S, Hanahan D: Non-tolerance and autoantibodies to a transgenic self-antigen expressed in pancreatic cells. Nature 325:223–8, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Robbins DC, Shoelson SE, Rubenstein AH, Tager HS. Familial hyperinsulinemia. J Clin Invest 73:714–19, 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Shoelson S, Haneda M, Blix P, et al. Three mutant insulins in man. Nature 302:540–3, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Kahn CR, Neville DM, Roth J: Insulin-receptor interaction in the obese hyperinsu- linemic mouse. J Biol Chem 248:244–50, 1973.

    PubMed  CAS  Google Scholar 

  32. Saffer JD: Transgenic mice in biomedical research. Lab Anim: 30–8, 1992.

    Google Scholar 

  33. Merlino GT: Transgenic animals in biomedical research. FASEB J 5:2996–3001, 1991.

    PubMed  CAS  Google Scholar 

  34. Munir MI, Rossiter BJF, Caskey CT: Antisense RNA production in transgenic mice. Somat Cell Mol Genet 16:383–94, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Capecchi MR: Altering the genome by homologous recombination. Science 244:1288–92, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Barinaga M: Knockout mice: Round two. Science 265:26–8, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Lipes MA, Eisenbarth GS: Transgenic mouse models of type I diabetes. Diabetes 39:879–84, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Harrison LC. Transgenic approaches to understanding the role of MHC genes in insulin-dependent diabetes mellitus. Clin Endocrinol Metab 5:439–47, 1991.

    CAS  Google Scholar 

  39. Moller DE: Transgenic approaches to the pathogenesis of NIDDM. Diabetes 3:1394–1401, 1994.

    Article  Google Scholar 

  40. Carrol RJ, Hammer RE, Chan SJ, et al. A mutant human proinsulin is secreted from islets of Langerhans in increased amount via an unregulated pathway. Proc Natl Acad Sci USA 85:8943–47, 1988.

    Article  Google Scholar 

  41. Welsh M, Hammer RE, Brinster RL, et al. Stimulation of growth hormone synthesis by glucose in islets of Langerhans isolated from transgenic mice. J Biol Chem 261:12915–917, 1986.

    PubMed  CAS  Google Scholar 

  42. Epstein PN, Boschero AC, Atwater I, et al. Expression of yeast hexokinase in pancreatic beta cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Proc Natl Acad Sci USA 89:12038–42, 1992.

    Article  PubMed  CAS  Google Scholar 

  43. Voss-McCowan ME, Xu B, Epstein PN: Insulin synthesis, secretory competence and glucose utilization are sensitized by transgenic yeast hexokinase. J Biol Chem 269:15814–818, 1994.

    PubMed  CAS  Google Scholar 

  44. Efrat S, Leiser M, Wu Y-J, et al. Ribozyme-mediated attenuation of pancreatic B- cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 91:2051–5, 1994.

    Article  PubMed  CAS  Google Scholar 

  45. Benecke H, Flier JS, Rosenthal N, et al. Muscle-specific expression of human insulin receptor in transgenic mice. Diabetes 42:206–12, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Chang P-Y, Benecke H, Le Marchand-Brustel Y, et al. Expression of a dominant- negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 269:16034–40, 1994.

    PubMed  CAS  Google Scholar 

  47. Schaefer EM, Viard V, Morin J, et al. A new transgenic mouse model of chronic hyperglycemia. Diabetes 43:143–53, 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Hoppener JWM, Oosterwijk C, Verbeek SJ, et al. IAPP/amylin transgenic mice as an in vivo model system for type 2 diabetes mellitus? Biochem Soc Trans 21:285,1992

    Google Scholar 

  49. Fox N, Schrement J, Nishi M, et al. Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus FEBS Lett 323:40–4,1993

    CAS  Google Scholar 

  50. D’Alessio DA, Verchere CB, Kahn SE, et al. Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43:1457–61,1994.

    Article  PubMed  Google Scholar 

  51. Unger RH: Diabetic hyperglycemia: Link to impaired glucose transport in pancreatic beta cells. Science 251:1200–5, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Tal M, Wu Y-J, Lweiser M, et al. [Val 12]Hras downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Proc Natl Acad Sci USA 89:5744–8, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Patel YM, Yun JS, Liu J, et al. An analysis of regulatory elements in the phospho- enolpyruvate carboxykinase (GTP) gene which are responsible for its tissue-specific expression and metabolic control in transgenic mice. J Biol Chem 269:5619–28,1994

    PubMed  CAS  Google Scholar 

  54. Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phos- phoenolpyruvate carboxykinase develop noninsulin-dependent diabetes mellitus. Proc Nat Acad Sci USA 91:9151–4, 1994.

    Article  PubMed  CAS  Google Scholar 

  55. Bucchini D, Ripoche MA, Stinnakre M-G, et al. Pancreatic expression of human insulin gene in transgenic mice. Proc Natl Acad Sci USA 83:2511–15, 1986.

    Article  PubMed  CAS  Google Scholar 

  56. Selden RF, Skoskiewicz MJ, Howie KB, et al. Regulation of human insulin gene expression in transgenic mice. Nature 321:525–8, 1986.

    Article  PubMed  CAS  Google Scholar 

  57. Schnetzler B, Murakawa G, Abalos D, et al. Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: Evidence for the importance of post- transcriptional regulation. J Clin Invest 92:272–86, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Brinster RL, Chan HJ, Trumbauer ME, et al. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82:4438–42, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Bonnerot C, Grimber G, Briand P, et al. Patterns of expression of position-dependent integrated transgenes in mouse embryo. Proc Natl Acad Sci USA 87:6331–35, 1990.

    Article  PubMed  CAS  Google Scholar 

  60. Reaven GM. Role of insulin resistance in human disease. Diabetes 37:1595–607, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. DeFronzo RA: Pathogenesis of type II (non-insulin-dependent) diabetes mellitus: A balanced overview. Diabetologia 35:389–97, 1992.

    Article  PubMed  CAS  Google Scholar 

  62. Taylor SI, Accili D, Imai Y: Insulin resistance or insulin deficiency: which is the primary cause of NIDDM? Diabetes 43:735–40, 1994.

    PubMed  CAS  Google Scholar 

  63. Bogardus C: Insulin resistance in the pathogenesis of NIDDM in Pima Indians. Diabetes Care 16:228–31, 1993.

    Article  PubMed  CAS  Google Scholar 

  64. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: Prospective studies of Pima Indians. N Engl J Med 329:1988–92, 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Haffner SM, Stern MP, Hazuda HP, et al. Hyperinsulinemia in a population at high risk for non-insulin-dependent diabetes mellitus. N Engl J Med 315:220–4, 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Johnston C, Ward WK, Beard JC, et al. Islet function and insulin sensitivity in the non-diabetic offspring of conjugal type 2 diabetic patients. Diabet Med 7:119–25, 1990.

    Article  PubMed  CAS  Google Scholar 

  67. Warram JH, Martin BC, Krolewski AS, et al. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–15, 1990.

    PubMed  CAS  Google Scholar 

  68. Martin BC, Warren JH, Krolewski AS, et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet 340:925–9, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Marbán, S.L., Roth, J. (1996). Transgenic hyperinsulinemia: A mouse model of insulin resistance and glucose intolerance without obesity. In: Shafrir, E. (eds) Lessons from Animal Diabetes VI. Rev.Ser.Advs.Research Diab.Animals (Birkhäuser), vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4112-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4112-6_13

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8658-5

  • Online ISBN: 978-1-4612-4112-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics