Advertisement

Why and how light can be used as a microtool

  • Karl Otto Greulich
Part of the Methods in Bioengineering book series (MB)

Abstract

Lasers can be hot. Perhaps you experienced this yourself. In industrial processes as well as in medical surgery this fact is exploited routinely. But what temperatures are generated exactly? Hundreds of degrees? Thousands of degrees? Perhaps even ten thousand degrees? The surprise is: it can be even much more than that. Even with comparatively small-table top lasers, extreme temperatures and a new physical state of matter, plasma can be generated.

Keywords

Corner Frequency Gradient Force Optical Tweezer Optical Trap Optical Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Selected literature

  1. B. Nölting, R. Golbik and A.R. Fersht (1995) Submillisecond events in protein folding. Proc. Natl. Acad. Sci 92.23, 10668–10672.Google Scholar
  2. D.J. Tobias, J.E. Mertz and C.L. Brooks (1995) Nanosecond time scale folding dynamics of a pentapeptide in water. Biochemistry 30, 6054–6058.CrossRefGoogle Scholar
  3. S. Williams, T.P. Casagrove, R. Gilmanshin, K.S. Fang R.H. Callendar, W.H. Woodroff and R.B. Dyer (1996) Fast events in protein folding; Helix melting and formation in a small peptide. Biochemistry 35, 690–697.Google Scholar
  4. R. Gilmanshin, S. Williams, R.H. Callender, W.H. Woodruff and R.B. Dyer (1997) Fast events in protein folding: Relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl. Acad. Sci. 94, 3709–3713.PubMedCrossRefGoogle Scholar

Selected literature

  1. M.W. Berns, J.B. Aist, W.H. Wright and H. Liang (1992) Optical trapping in animal and fungal cells using a tunable near-infrared titanium-sapphire laser. Exp. Cell. Res. 188, 375–378.CrossRefGoogle Scholar
  2. P.P. Calmettes and M.W. Berns (1983) Laser-induced mutiphoton processes in living cells. Proc. Natl. Acad. Sci. 80,7197–7199.PubMedCrossRefGoogle Scholar
  3. N.P. Furzikov (1987) Different lasers for angioplasty: Thermo optical comparison. IEEE J. Quant. Elect. QE 23, 1751–1755.CrossRefGoogle Scholar
  4. K. König, H. Liang, M.W. Berns and B.J. Tromberg (1995) Cell damage by near- IR microbeams. Nature 377, 20–21.PubMedCrossRefGoogle Scholar
  5. H. Liang, K. Tong, T. Ching Trang, D. Shin, S. Kimel and M.W. Berns (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Bio- ph. J. 70, 1–5.Google Scholar
  6. Y. Liu, D.K. Cheng, G.J. Sonek, M.W. Berns, C.F. Chapman and B.J. Tromberg (1995) Evidence for localized cell heating induced by IR optical tweezers. Bio- ph. J. 68.5,2137–2144.Google Scholar
  7. Y. Liu, G.J. Sonek, M.W. Berns, K. König and B.J. Tromberg (1995) Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Applied Optics 20, 2246–2248.Google Scholar
  8. Szymacinski, I. Gryczynski and J.R. Lakowicz (1996) Three-photon induced fluorescence of the calcium probe indo 1. Bioph. J. 70, 547–555.CrossRefGoogle Scholar
  9. I. A. Vorobjev, H. Liang, W.H. Wright and M.W. Berns (1993) Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. Bioph. J. 64, 533–538.CrossRefGoogle Scholar
  10. A.J. Welch, M. Motamedi, S. Rastegar, G.L. Le Carpentier and D. Jansen (1991) Laser thermal ablation. Photochemistry and Photobiology 53, 815–823.PubMedGoogle Scholar
  11. W. Yu, P.T.C. So, T. French and E. Gratton (1996) Fluorescence generalized polarization of cell membranes: A two photon scanning microscopy approach. Bioph. J. 70, 626–636.CrossRefGoogle Scholar

Selected literature

  1. A. Ashkin and J.M. Dziedzic (1989) Optical trapping and manipulation of single living cells using infrared laser beams. Ber. Bunsenges. Phys. Chem. 93, 254–258.Google Scholar
  2. Ashkin (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582.PubMedCrossRefGoogle Scholar
  3. W.H. Wright, G.J. Sonek and M.W. Berns (1994) Parametric study of the forces on microspheres held by optical tweezers. Applied Optics 33, 1735–1748.PubMedCrossRefGoogle Scholar

Selected literature

  1. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber (1998) Applied Physics A, 66, 575–578 Photonic force microscope calibration by Thermal noise analysis.CrossRefGoogle Scholar
  2. M.D. Wang, H. Yin, R. Landick, J. Gelles and S.M. Block (1997) Stretching DNA with optical tweezers. Bioph. J. 72.3, 1335–1346.CrossRefGoogle Scholar
  3. R.M. Simmons, J.F. Finer, S. Chu and J.A. Spudich (1996) Quantitative measurement of forces and displacement using an optical trap. Bioph. J. 70.4, 1813–1822.CrossRefGoogle Scholar
  4. K. Svoboda and S.M. Block (1994) Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struct., 247–285.Google Scholar

Note added in proof: A further calibration method has been published in 1998

  1. G. Fuhr, Th. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, K.O. Greulich 1998 Applied Physics A, 67, 385–390 For measurements of optical tweezers in electro-optical cages.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1999

Authors and Affiliations

  • Karl Otto Greulich
    • 1
  1. 1.Institut für Molekulare Biotechnologie e.V.JenaGermany

Personalised recommendations