Skip to main content

Natural Exponential Families and Umbral Calculus

  • Chapter
Mathematical Essays in honor of Gian-Carlo Rota

Part of the book series: Progress in Mathematics ((PM,volume 161))

Abstract

We use the Umbral Calculus to investigate the relation between natural exponential families and Sheffer polynomials. As a corollary, we obtain a new transparent proof of Feinsilver’s theorem which says that natural exponential families have a quadratic variance function if and only if their associated Sheffer polynomials are orthogonal.

Author supported NATO CRG 930554.

Author partially supported by URA CNRS 1304, EC grant CHRX-CT93-0400, the PRC Maths-Info, and NATO CRG 930554.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Bucchianico, D.E. Loeb, and G.-C. Rota, Umbral calculus in Hilbert space, to appear in Rota Festschrift.

    Google Scholar 

  2. W.A. Al-Salam, On a characterization of Meixner’s polynomials, Quart J. Math. Oxford 2 17 (1966), 7–10.

    Article  MathSciNet  Google Scholar 

  3. S.K. Bar-Lev, D. Bshouty, P. Enis, G. Letac, I.-L. Lu, D. Richards, The diagonal multivariate natural exponential families and their classification. J. Theoret. Probab. 7 (1994), 883–929.

    Article  MathSciNet  MATH  Google Scholar 

  4. T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.

    MATH  Google Scholar 

  5. Y. Chikuse, Multivariate Meixner classes of invariant distributions, Lin. Alg. Appl. 82 (1986), 177–200.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.J. Dobson, An introduction to generalized linear models, Chapman and Hall, 1994.

    Google Scholar 

  7. P.J. Feinsilver, Special Functions Probability Semigroups, and Hamiltonian Flows, Lect. Notes in Math.696 Springer, Berlin, 1978.

    Google Scholar 

  8. J.M. Freeman, Orthogonality via transforms, Stud. Appl. Math. 77 (1987), 119–127.

    MathSciNet  MATH  Google Scholar 

  9. M.E.H. Ismail, Polynomials of binomial type and approximation theory, J. Approx. Theor. 23 (1978), 177–186.

    Article  MATH  Google Scholar 

  10. M.E.H. Ismail and C.P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446–462.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.A. Joni, Multivariate exponential operators, Stud. Appl. Math.62 (1980), 175–182.

    MathSciNet  MATH  Google Scholar 

  12. A.N. Kholodov, The umbral calculus and orthogonal polynomials, Acta Appl. Math. 19 (1990), 55–76.

    MathSciNet  MATH  Google Scholar 

  13. H.O. Lancaster, Joint probability distributions in the Meixner classes, J. Roy. Stat. Soc. B 37 (1975), 434–443.

    MathSciNet  MATH  Google Scholar 

  14. G. Letac, Le problème de la classification des familles exponentielles naturelles de Rd ayant une fonction variance quadratique, in: Probability measures on groups IX, Lect. Notes in Math. 1379, H. Heyer (ed.), Springer, Berlin, 1989, 192–216.

    Chapter  Google Scholar 

  15. G. Letac and M. Mora, Natural real exponential families with cubic variance functions, Ann. Stat.18 (1990), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  16. C.P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Can. J. Math.28 (1976), 1224–1250.

    Article  MATH  Google Scholar 

  17. J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Punktion, J. London Math. Soc.9 (1934), 6–13.

    Article  Google Scholar 

  18. C.N. Morris, Natural exponential families with quadratic variance functions,Ann. Stat. 10 (1982), 65–80.

    Article  MATH  Google Scholar 

  19. C.N. Morris, Natural exponential families with quadratic variance functions: statistical theory, Ann. Stat.11 (1983), 515–529.

    Article  MATH  Google Scholar 

  20. D. Pommeret, Familles exponentielles naturelles et algèbres de Lie,Exposition. Math. 14 (1996), 353–381.

    MathSciNet  MATH  Google Scholar 

  21. D. Pommeret, Orthogonal polynomials and natural exponential families, Test 5 (1996), 77–111.

    Article  MathSciNet  MATH  Google Scholar 

  22. G.-C. Rota, D. Kahaner, and A. Odlyzko, On the foundations of combinatorial theory VII. Finite operator calculus,J. Math. Anal. Appl. 42 (1973), 684–760.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.M. Roman, The Umbral Calculus, Academic Press, 1984.

    Google Scholar 

  24. S.M. Roman, P. De Land, R. Shiflett, and H. Schultz, The umbral calculus and the solution to certain recurrence relations, J. Comb. Inf. Sys. Sci. 8 (1983), 235–240.

    MATH  Google Scholar 

  25. S.D. Silvey, Statistical inference, Monographs on Statistics and Applied Probability 7, Chapman and Hall, 1991.

    Google Scholar 

  26. I.M. Sheffer, Some properties of polynomials of type zero, Duke Math. J.5 (1939), 590–622.

    Article  MathSciNet  Google Scholar 

  27. X.-H. Sun, New characteristics of some polynomial sequences in combinatorial theory,J. Math. Anal. Appl. 175 (1993), 199–205.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser

About this chapter

Cite this chapter

di Bucchianico, A., Loeb, D.E. (1998). Natural Exponential Families and Umbral Calculus. In: Sagan, B.E., Stanley, R.P. (eds) Mathematical Essays in honor of Gian-Carlo Rota. Progress in Mathematics, vol 161. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4108-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4108-9_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8656-1

  • Online ISBN: 978-1-4612-4108-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics