The Would-Be Method of Targeted Rings

  • Ottavio M. D’Antona
Part of the Progress in Mathematics book series (PM, volume 161)

Abstract

We describe the notion of an algebraic structure underlying a combinatorial identity or an inequality. In so doing, we supply an algebraic motivation for symbolic substitutions like x n x n ,x n → (x) n and others.

Keywords

Geted 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aigner, Combinatorial Theories, Springer, New York/Berlin, 1979.Google Scholar
  2. [2]
    S. Bertoluzza and O. D’Antona, Considerazioni di tipo algebrico sulla diseguaglianza di Bonferroni, Technical Report RIDIS 28–87, Dipartimento di Informatica e Sistemistica, Università di Pavia, 1987.Google Scholar
  3. [3]
    L. Comtet., Advanced Combinatorics, Birkäuser, 1974.MATHGoogle Scholar
  4. [4]
    H. H. Crapo, Rota’s “combinatorial theory,” in Gian-Carlo Rota on Combinatorics, J.P.S. Kung, ed., xix–xiii, Birkäuser, Boston 1995.Google Scholar
  5. [5]
    O. D’Antona, A ring underlying probabilistic identities, J. Math. Anal. Appl., 108:211–215, 1985.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    O. D’Antona, Combinatorial properties of the factorial ring, J. Math. Anal. Appl 117:303–309, 1986.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    O. D’Antona, Pseudo power series, Technical Report RIDIS 27–87, Dipartimento di Informatica e Sistemistica, Università di Pavia, 1987.Google Scholar
  8. [8]
    O. D’Antona and A. Pesci, Connecting two rings underlying the inclusion-exclusion principle, J. Combin. Theory Ser. A, 40:439–443, 1985.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    O. D’Antona and G.-C. Rota, Two rings connected with the inclusion-exclusion principle, J. Combin. Theory Ser. A, 24:65–72, 1978.MathSciNetGoogle Scholar
  10. [10]
    M. Fréchet, Les probabilités associées à un système d’événements compatible et dépendants, Vol. I, Herman, Paris, 1940.Google Scholar
  11. [11]
    J. Riordan, An Introduction to Combinatorial Analysis, J. Wiley & Sons, 1958.MATHGoogle Scholar
  12. [12]
    S. Roman, Umbral Calculus, Reidel, Dordrecht, 1984.MATHGoogle Scholar
  13. [13]
    G.-C. Rota, The number of partitions of a set, Amer . Math. Monthly, 71:498–505, 1964.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    R. P. Stanley, Enumerative Combinatorics, Wadworth & Brooks, Monterey, 1986.MATHGoogle Scholar

Copyright information

© Birkhäuser 1998

Authors and Affiliations

  • Ottavio M. D’Antona
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations