Skip to main content

Self-Assembling Protein Systems: A Model for Materials Science

  • Chapter
Protein-Based Materials

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

Spontaneous organization and assembly is an almost universal component of complex natural systems and is considered to be the key factor in the emergence of biological organisms over three billion years ago. At the earliest stages of evolution, individual chemical groups would transiently come together to catalyze reactions; later, an evolutionary explosion occurred when organisms linked the needed functional groups together in proteins to improve the efficiency of these processes. Today organisms rely almost exclusively on proteins to accomplish such complex tasks as catalysis, synthesis of intermediates, energy transduction, and replication of DNA. Because of this, considerable effort has been directed toward understanding how the individual components interact to catalyze reactions, recognize and respond to chemical messengers, regulate gene expression in cells, and spontaneously assemble into complex structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creighton T (1984): Proteins: Structures and Molecular Properties. W.H. Freeman and Co, New York

    Google Scholar 

  2. Levitt M (1974): J Mol Biol 82:393

    Article  PubMed  CAS  Google Scholar 

  3. Allen LC (1975): Proc Nat Acad Sci (USA) 72:4701

    Article  CAS  Google Scholar 

  4. Mitra J, Ramakrishnan C (1981) Int J Pept Protein Res 17:401

    Article  PubMed  CAS  Google Scholar 

  5. Wolfenden R (1978): Biochemistry 17:201

    Article  PubMed  CAS  Google Scholar 

  6. Richards F (1977): Ann Rev Biophys Bioeng 6:151

    Article  CAS  Google Scholar 

  7. Tanford C (1980): The Hydrophobic Effect. Wiley-Interscience, New York

    Google Scholar 

  8. Fraenkel-Conrat H (1962): Design and Function at the Threshold of Life: The Viruses. Academic Press, New York

    Google Scholar 

  9. Klug A (1972): Fed Proc 31:31

    Google Scholar 

  10. Brian J, Wilson L (1971): Proc Natl Acad Sci (USA) 68:1762

    Article  Google Scholar 

  11. Purich DL, Kristofferson D (1984): Adv Prot Chem 36:133

    Article  CAS  Google Scholar 

  12. Zheng Y, Wong ML, Alberts B, Mitchison T (1995): Nature 378:578

    Article  PubMed  CAS  Google Scholar 

  13. Cleveland DW (1994): In: Guidebook to the Cytoskeletal and Motor Proteins, Kreis T, Vale R, eds. Oxford University Press, New York

    Google Scholar 

  14. Kellogg DR, Moritz M, Alberts B (1994): Annu Rev Biochem 63:639

    Article  PubMed  CAS  Google Scholar 

  15. Oakley BR, Oakley CE, Yoon Y, Jung MK (1990): Cell 61:1289

    Article  PubMed  CAS  Google Scholar 

  16. Mitchison T, Kirschner MW (1984): Nature 312:237

    Article  PubMed  CAS  Google Scholar 

  17. Hotani H, Horio T (1988): Cell Motil Cytoskeleton 10:229

    Article  PubMed  CAS  Google Scholar 

  18. Stewart M (1993): Curr Opin Cell Biol 5:3

    Article  PubMed  CAS  Google Scholar 

  19. Coulombe PA (1993): Curr Opin Cell Biol 5:17

    Article  PubMed  CAS  Google Scholar 

  20. Steinert PM (1993): J Invest Dermatol 100:729

    Article  PubMed  CAS  Google Scholar 

  21. Liem RKH (1993): Curr Opin Cell Biol 5:12

    Article  PubMed  CAS  Google Scholar 

  22. Albers K, Fuchs E (1992): Int Rev Cytol 134:243

    Article  PubMed  CAS  Google Scholar 

  23. Parry DAD, Steinert PM (1992): Curr Opin Cell Biol 4:94

    Article  PubMed  CAS  Google Scholar 

  24. Stewart M (1990): Curr Opin Cell Biol 2:91

    Article  PubMed  CAS  Google Scholar 

  25. Steinert PM, Parry DAD (1985): Annu Rev Cell Biol 1:41

    Article  PubMed  CAS  Google Scholar 

  26. Heins S, Aebi U (1994): Curr Opin Cell Biol 6:25

    Article  PubMed  CAS  Google Scholar 

  27. Steinert PM, Marekov LN, Fraser RDB, Parry DAD (1993):J Mol Biol 230:436

    Article  PubMed  CAS  Google Scholar 

  28. Steinert PM (1990): J Biol Chem 265:8766

    PubMed  CAS  Google Scholar 

  29. Steinert PM (1991): J Struct Biol 107:175

    Article  PubMed  CAS  Google Scholar 

  30. Heins S, Wong PC, MĂĽller S, Goldie K, Cleveland DW, Aebi U (1993): J Cell Biol 123:1517

    Article  PubMed  CAS  Google Scholar 

  31. Wilson AK, Coulombe PA, Fuchs E (1992): J Cell Biol 119:401

    Article  PubMed  CAS  Google Scholar 

  32. Quinlan R, Hutchison C, Lane B (1994): Prot Profile 1:779

    CAS  Google Scholar 

  33. Bogue RH (1992): The Chemistry and Technology of Gelatin and Glue. McGraw-Hill, New York

    Google Scholar 

  34. Katz AR, Turner RJ (1970): Surg Gynecol Obstet 134:701

    Google Scholar 

  35. Goldberg I, Salerno AJ, Patterson T, Williams JI (1989): Gene 80:305

    Article  PubMed  CAS  Google Scholar 

  36. Gorham SD (1991): Collagen as a biomaterial. In: Biomaterials: Novel Materials from Biological Sources, Byrom D, ed. Stockton Press, New York

    Google Scholar 

  37. Fessler JH, Doege KJ, Duncan KG, Fessler LI (1985): J Cell Biochem 28:31

    Article  PubMed  CAS  Google Scholar 

  38. Duance V, Bailey AJ (1981): Biosynthesis and degradation of collagen. In: Handbook of Inflammation, Vol. 3, Tissue Regeneration and Repair, Glynn LE, ed. Elsevier, Amsterdam

    Google Scholar 

  39. Byers PM, Click EM, Harper E, Bornstein P (1975): Proc Nat Acad Sci (USA) 72:3009

    Article  CAS  Google Scholar 

  40. Schofield JD, Uitto J, Prockop DJ (1974): J Biol Chem 249:7637

    Google Scholar 

  41. Fessler JH, Fessler LI (1976): Fed Proc 35:1355

    Google Scholar 

  42. Light ND, Bailey AJ (1980): Molecular structure and stabilisation of the collagen fibre. In: Biology of Collagen, Viidik A, Vuust J, eds. Academic Press, New York

    Google Scholar 

  43. Linsenmayer TF (1981): Collagen. In: Cell Biology of the Extracellular Matrix, Hay E, ed. Plenum Press, London

    Google Scholar 

  44. Fessler LI, Fessler JH (1974): J Biol Chem 249:7637

    PubMed  CAS  Google Scholar 

  45. Harrison PM, et al. (1989): In: Biomineralization: Chemical and Biological Perspectives, Mann S, Webb J, Williams RJP, eds. VCH Press, Weinheim FRG

    Google Scholar 

  46. Arosio P, Adelman TG, Drysdale JW (1978): J Biol Chem 253:4451

    PubMed  CAS  Google Scholar 

  47. Cazzola M, et al. (1983): Blood 62:1078

    PubMed  CAS  Google Scholar 

  48. Rice DW, Ford GC, White JL, Smith JMA, Harrison PM (1983): Adv Inorg Biochem 5:39

    CAS  Google Scholar 

  49. Harrison PM (1959): J Mol Biol 1:69

    Article  CAS  Google Scholar 

  50. Gerl M, Jaenicke R (1987): Eur Biophys 15:103

    CAS  Google Scholar 

  51. Gerl M, Jaenicke R (1988): Biochemistry 27:4089

    Article  PubMed  CAS  Google Scholar 

  52. Mann S, et al. (1993): Science 261:1286

    Article  PubMed  CAS  Google Scholar 

  53. Landschulz WH, Johnson PF, McKnight SL (1988): Science 240:1759

    Article  PubMed  CAS  Google Scholar 

  54. O’Shea EK, Rutkowski R, Kim PS (1992): Cell 68:699

    Article  PubMed  Google Scholar 

  55. O’Shea EK, Lumb KJ, Kim PS (1993): Curr Biol 3:658

    Article  PubMed  Google Scholar 

  56. McGrath KP, Kaplan DL (1993): MRS Symp Proc 292:83

    Article  CAS  Google Scholar 

  57. McGrath KP, Kaplan DL (1994): Macromol Symp 77:183

    Article  CAS  Google Scholar 

  58. McGrath KP, Butler MM, DiGirolamo CM, Kaplan DL (1996): manuscript submitted to Biochemistry

    Google Scholar 

  59. Jarrett FJT, Lansbury PT (1992): Biochemistry 31:12345

    Article  PubMed  CAS  Google Scholar 

  60. Zhang S, Holmes T, Lockshin C, Rich A (1993): Proc Nat Acad Sci (USA) 90:3334

    Article  CAS  Google Scholar 

  61. Zhang S, Lockshin C, Cook R, Rich A (1994): Biopolymers 34:661

    Google Scholar 

  62. Nomura M (1973): Science 179:864

    Article  PubMed  CAS  Google Scholar 

  63. King J, Laemmli UK (1974): Nature 251:112

    Article  PubMed  CAS  Google Scholar 

  64. Bothwell M, Schachman HK (1974): Proc Nat Acad Sci (USA) 71:3221

    Article  CAS  Google Scholar 

  65. O’Brien JP, et al. (1994): In: Silk Polymers: Materials Science and Biotechnology, ACS Symp Series 544:104

    Book  Google Scholar 

  66. Choo D, Schneider J, Graciani N, Kelly J (1996): Macromolecules 29:355

    Article  CAS  Google Scholar 

For Further Information

  • Urry, D.W. 1993. “Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes,” Angew. Chem. (German) 105: 859–883; Angew. Chem. Int. Ed. Engl., 32: 819–841.

    Google Scholar 

  • Urry, D.W. 1994. “Postulates for Protein (Hydrophobic) Folding and function,” Int. J. Quant. Chem.: Quant. Biol. Symp. 21: 3–15.

    Google Scholar 

  • Urry, D.W., Gowda, D.C., Peng, S.Q. and Parker, T.M. 1992. “Design at Nanometric Dimensions to Enhance Hydrophobicity-induced pKa Shifts,” J. Am. Chem. Soc. 114: 8716–8717.

    Google Scholar 

  • Urry, D.W., Peng, S.Q. and Parker, T.M. 1993. “Delineation of Electrostatic-and Hydrophobic-Induced pKa Shifts in Polypentapeptides: The Glumatic Acid Residue,” J. Am. Chem. Soc. 115: 7509–7510.

    Google Scholar 

  • Urry, D.W., Peng, S.Q., Parker, T.M. and Gowda, C.D. 1993. “Relative Significance of Electrostatic- and Hydrophobic-Induced pKa Shifts in a Model Protein: The Aspartic Acid Residue,” Angew. Chem. (German) 105:1523–1525; Angew. Chem. Int. Ed.( Engl.), 32: 1440–1442.

    Google Scholar 

  • Urry, D.W., Gowda, D.C., Peng, S.Q. and Parker, T.M. 1994. “Nanometric Design of Extraordinary Hydrophobicity-induced pKa Shifts for Aspartic Acid: Relevance to Protein Mechanisms,” Biopolymers, 34: 889–896.

    Google Scholar 

  • Urry, D.W., Peng, S.Q., Gowda, and D.C. Parker, T.M. 1194. “Comparison of Electrostatic- and Hydrophobic-induced pKa Shifts in Polypentapeptides: The Lysine Residue,” Chemical Physics Letters 225: 97–103.

    Google Scholar 

  • Urry, D.W., Nicol, A., McPherson, D.T., and Xu, J. et al., 1995c. “Properties, Preparations and Applications of Bioelastic Materials,” In Handbook of Biomaterials and Applications, Marcel Dekker, Inc., New York, NY, pp. 1619–73.

    Google Scholar 

  • Urry, D.W., McPherson, D.T., Xu, J., and Daniell, H. et al., 1995a. “Protein-Based Polymeric Materials: Syntheses and Properties” in The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, CRC Press, Boca Raton, FL (in press).

    Google Scholar 

  • Urry, D.W. 1995, January. “Elastic Biomolecular Machines: Energy Conversion and Insight into Diverse Biological Processes and Materials Applications,” Scientific American 80–86.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

McGrath, K.P., Butler, M.M. (1997). Self-Assembling Protein Systems: A Model for Materials Science. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics