Skip to main content

Marine Adhesives: From Molecular Dissection to Application

  • Chapter
Protein-Based Materials

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

Much has been written about the need for adhesives that bind surfaces in the presence of water, are compatible with living tissues, and are durable yet in some applications ultimately biodegradable (Abbott, 1992; Strausberg and Link, 1990). The sea is full of practitioners of such adhesive strategies. Barnacles, reef worms, oysters, foraminifera, mussels, etc all have life histories that depend upon their secure attachment to solid substrata for survival (Harris, 1990). About thirty years ago, the United States Office of Naval Research initiated an antifouling program whose goal was to identify the adhesive molecules of marine foulers so as to specifically intervene in their attachment. A few years later, a materials program at the National Institutes of Health joined the initiative on marine bioadhesives with the aim of imitating them for numerous biomedical applications (Anon, 1968). This has not changed the nature of the research but has certainly doubled the perceived impact of any fully characterized adhesive strategy. This article aims to lay out the status of this characterization with diverse organisms that share similar bioadhesive strategies and to describe the various applications that are developing from this knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott A (1990): Bioadhesives: potential for exploitation. Sci Prog 74:131–146

    CAS  Google Scholar 

  • Ainscough EW, Brodie AM, Plowman JE, Brown KL, Addison AW, Gainsford AR (1980): Small molecule analogues for the specific iron-binding site of lactoferrin: single-crystal X-ray structure of bis(methanol)bis[2-(5-methylpyrazol-3-yl)phenolato]iron(III) nitrate-methanol and spectroscopic studies on iron (III) phenolate complexes. Inorg Chem 19:3655–3663

    Article  CAS  Google Scholar 

  • Anonymous (1968): Science and the Citizen: Barnacle glue. Sci Am 219:46–47

    Article  Google Scholar 

  • Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978): Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc 100:5362–5370

    Article  CAS  Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1990a): Halocyamines: novel antimicrobial tetrapeptides-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 29:159–165

    Article  PubMed  CAS  Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1990b): The presence of dihydroxyphenylalanine-containing peptides in hemocytes of the ascidian Halocynthia roretzi. Experientia 46:1020–1023

    Article  CAS  Google Scholar 

  • Bairati A (1991): The byssus of the mussel Mytilus from the molecules to the organ: Functional performance resides in the ultrastructural assembly. In: Form and Function in Zoology, Lanzavecchia G, Valvassori G, eds. Modena, Italy:Mucchi

    Google Scholar 

  • Bayer E, Schiefer G, Waidelich D, Scippa S, de Vincentis M (1992): Structure of the tunichrome of tunicates and its role in concentrating vanadium Angew Chem Int Ed Engl 31:52–54

    Article  Google Scholar 

  • Bell MV, Pirie BJS, McPhail DB, Goodman BA, Faulk-Peterson I-B, Sargent JR (1982): Contents of vanadium and sulfur in the blood cells of Ascidia mentula and Ascidiella aspersa. J Mar Biol Assoc UK 62:709–716

    Article  CAS  Google Scholar 

  • Benedict CV, Picciano PT (1989): Adhesives from marine mussels. In: Adhesives from Renewable Resources, ACS Symposium Series, Vol. 385, Hemingway RW, Conner AH, Branham SJ, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Benedict CV, Waite JH (1986): Location and analysis of byssal structural proteins. J Morphol 189:261–270

    Article  PubMed  CAS  Google Scholar 

  • Biggs WR, Swinehart JH (1976): Vanadium in selected biological systems. In: Metal Ions in Biological Systems, Vol. 6, Sigel H, ed. New York: Marcel Dekker

    Google Scholar 

  • Bowen HJ (1973): Potential dental cement from the marine mussel Area. In: Dental Adhesives Materials, Moscowitz HD, Ward GT, Woolridge ED, eds. Bethesda, MD: National Institutes of Dental Research

    Google Scholar 

  • Brown CH (1950): A review of the methods available for the determination of the forces stabilizing structural proteins in animals. Quart J Microsc Sei 91:331–343

    Google Scholar 

  • Carlson RMK (1975): Nuclear magnetic resonance spectrum of living tunicate blood cells and the structure of the native vanadium chromogen. Proc Natl Acad Sci USA 72:2217–2221

    Article  PubMed  CAS  Google Scholar 

  • Coombs TL, Keller PJ (1981): Mytilus byssal threads as an environmental marker for metals. Aquatic Toxicol 1:291–300

    Article  CAS  Google Scholar 

  • Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986): Data for Biochemical Research, 3rd Edition. Oxford: Oxford University Press

    Google Scholar 

  • Denny MW (1988): Biology and the Mechanics of the Wave Swept Environment. Princeton, NJ: Princeton University Press

    Google Scholar 

  • Diamond TV (1993): DOPA-containing components in the byssal adhesive plaque of Mytilus edulis L. PhD Thesis. Wilmington, DE: University of Delaware

    Google Scholar 

  • Dorsett LC, Hawkins CJ, Grice JA, Lavin MF, Merefield PM, Parry DL, Ross IL (1987): Ferreascidin: a highly aromatic protein containing 3,4 dihydroxyphenylalanine from the blood cells of a stolidobranch ascidian. Biochemistry 26:8078–8082

    Article  CAS  Google Scholar 

  • Edelhoch H (1967): Spectroscpoic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  PubMed  CAS  Google Scholar 

  • Hansen DC, Luther GW, Waite JH (1994): Adsorption of the adhesive protein of the blue mussel Mytilus edulis onto type 304L stainless steel. J Colloid Interf Sci 168:206–216

    Article  CAS  Google Scholar 

  • Hansen DC, Dexter SC, Waite JH (1995): Inhibition of corrosion of S30403 stainless steel by a naturally occurring catecholic polymer. Corrosion Science 37:1423–1441

    Article  CAS  Google Scholar 

  • Harris VA (1990): Sessile Animals of The Seashore. London: Chapman & Hall

    Google Scholar 

  • Holl SM, Hansen DC, Waite JH, Schaefer J (1993): Solid-State NMR analysis of crosslinking in mussel protein glue. Arch Biochem Biophys 302:255–258

    Article  PubMed  CAS  Google Scholar 

  • Huggins LG, Waite JH (1993): Egg shell formation in Bdelloura Candida, an ecto parasitic turbellarian of the horseshoe crab Limulus polyphemus. J Exp Zool 265:549–557

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Odo S (1994): The adhesive protein cDNA of Mytilus galloprovincialis encodes decapeptide repeats but no hexapeptide motif. Biol Bull 186:349–355

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, Odo S (1995): Mussel adhesive plaque protein gene: A novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701

    Article  PubMed  CAS  Google Scholar 

  • Jensen RA, Morse DE (1984): Intraspecific facilitation of larval recruitment: Gregarious settlement of the polychaete Phragmatopoma californica. J Exp Mar Biol Ecol 83:107–126

    Article  Google Scholar 

  • Jensen RA, Morse DE (1988): The bioadhesive of Phragmatopoma californica. tubes: a silk-like cement containing L-Dopa. J Comp Physiol 158B:317–324

    Google Scholar 

  • Laursen RA (1992): Reflections on the structure of mussel adhesive proteins. In: Results and Problems in Cell Differentiation, 19, Biopolymers, Case ST, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Lee S, Kustin K, Robinson WE, Frankel RB, Spartalian K (1988): Magnetic properties of tunicate blood cells. I. Ascidia nigra. J Inorg Biochem 33:183–192

    Article  CAS  Google Scholar 

  • Loomis LD, Raymond KN (1991): Solution equilibria of enterobactin and metal-enterobactin complexes. Inorg Chem 30:907–911

    Article  Google Scholar 

  • Mascolo JM, Waite JH (1986): Protein gradients in the byssal threads of some marine bivalve molluscs. J Exp Zool 240:1–7

    Article  PubMed  CAS  Google Scholar 

  • Michibata H, Hirata J, Uesaka M, Numakunai T, Sakurai H (1987): Separation of vanadocytes: determination and characterization of vanadium ion in the separated blood cells of the ascidian Ascidia ahodori. J Exp Zool 244:33–38

    Article  CAS  Google Scholar 

  • Nagafuchi T (1992): Mechanism of adhesion of polyphenolic protein and its potential for clinical application. J Jpn Orthop Assoc 66:1176–1183

    CAS  Google Scholar 

  • Notter MFD (1988): Selective attachment of neural cells to specific substrates including Cell-Tak, a new cellular adhesive. Exp Cell Res 177:237–246

    Article  PubMed  CAS  Google Scholar 

  • Olivieri MP, Baier RE, Loomis RE (1992): Surface properties of mussel adhesive protein component films. Biomaterials 13:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Oltz EM, Bruening RC, Smith MJ, Nakanishi K, Kustin K (1988): The tunichromes. A class of reducing blood pigments from sea squirts: Isolation, structures, and vanadium chemistry. J Am Chem Soc 110:6162–6172

    Article  PubMed  CAS  Google Scholar 

  • Papov V, Diamond TV, Biemann K, Waite JH (1995): Hydroxyarginine-containing proteins from the adhesive plaque of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192

    Article  PubMed  CAS  Google Scholar 

  • Paz MA, FlĂĽckinger R, Boak A, Kagan HM, Gallop P (1991): Specific detection of quinoproteins by redox cycling staining. J Biol Chem 266:689–692

    PubMed  CAS  Google Scholar 

  • Price HA (1981): Byssus thread strength in the mussel, Mytilus edulis. J Zool Lond 194:245–255

    Article  Google Scholar 

  • Qin X-X, Waite JH (1996): Exotic collagen gradients in the byssus threads of Mytilus edulis. J Exp Biol 198:633–644

    Google Scholar 

  • Reid RT, Live DH, Faulkner DJ, Butler A (1993): A siderophore from the marine bacterium with an exceptional ferric ion affinity constant. Nature 366:455–458

    Article  PubMed  CAS  Google Scholar 

  • Rice-Ficht AC, Dusek KA, Kochevar GJ, Waite JH (1992): Eggshell precursor proteins of Fasciola hepatica. I. Structure and expression of vitelline protein B. Mol Biochem Parasitol 54:129–142

    Article  PubMed  CAS  Google Scholar 

  • Riordan JF, Vallee BL (1972): O-Acetyltyrosine. In: Methods in Enzymology, Vol. 25, Hirs CHW, Timasheff SN, eds. New York: Academic Press

    Google Scholar 

  • Rudall KM (1955): The distribution of collagen and chitin. Symp Soc Exp Biol 9:49–71

    Google Scholar 

  • Rzepecki LM, Hansen KM, Waite JH (1992): Characterization of a cysteine-rich polyphenolic protein family from the blue mussel. Biol Bull 183:123–137

    Article  CAS  Google Scholar 

  • Scippa S, Botte L, Zierold K, de Vincentis M (1985): X-ray microanalytical studies on the cryofixed blood cells of the ascidian Phallusia mammillata. I. Elemental composition of the morula cells. Cell Tiss Res 239:459–461

    Article  CAS  Google Scholar 

  • Seifter S, Gallop PM (1966): The structure proteins. In: The Proteins, Neurath H, ed. New York: Academic Press

    Google Scholar 

  • Smeathers JE, Vincent JFV (1979): Mechanical properties of mussel byssus threads. J Moll Stud 45:219–230

    Google Scholar 

  • Smyth JD (1954): A technique for the histochemical demonstration of polyphenoloxidase and its application to eggshell formation in helminths and byssus formation in Mytilus. Quart J Microsc Sei 95:139–152

    Google Scholar 

  • Sperling LH (1981): Interpenetrating Polymer Networks and Related Materials. New York: Plenum

    Book  Google Scholar 

  • Strausberg RL, Link RP (1990): Protein based medical adhesives. Trends Biotechnol 8:53–57

    Article  PubMed  CAS  Google Scholar 

  • Tamarin A, Lewis P, Askey J (1976): The structure and function of the byssal attachment plaque forming region in Mytilus californianus. J Morphol 149:199–222

    Article  PubMed  CAS  Google Scholar 

  • Taylor SW (1992): Selected chemistry of ascidian blood cells. PhD Thesis. Brisbane, Australia: University of Queensland

    Google Scholar 

  • Taylor SW, Molinski TF, Rzepecki LM, Waite JH (1991): Oxidation of peptidyl-3,4-dihydroxyphenylalanine analogues: Implications for the biosynthesis of tunichromes and related oligopeptides. J Nat Prod 54:918–922

    Article  PubMed  CAS  Google Scholar 

  • Taylor SW, Parry DL, Hawkins CJ, Swinehart JH (1993a): Investigation of tunichrome and its relation to vanadium in living ascidian blood cells and their lysates. Comp Biochem Physiol 106A:531–536

    Article  CAS  Google Scholar 

  • Taylor SW, Winzor DJ, Hawkins CJ (1993b): Spectrophotometric evidence for the involvment of aromatic residues in the interaction of ferresacidin with ferric ion. Inorg Chem 32:422–427

    Article  CAS  Google Scholar 

  • Taylor SW, Luther GW, Waite JH (1994a): Polarographic and spectrophotometers investigation of iron (III) complexation to 3,4-dihydroxyphenylalanine-containing peptides and proteins from Mytilus edulis. Inorg Chem 33:5819–5824

    Article  CAS  Google Scholar 

  • Taylor SW, Ross MM, Waite JH (1996) Novel 3,4-di- and 3,4,5-trihydroxyphenylalanine-containing polypeprides from the blood cells of the ascidians Ascidia ceratodes and Molgula manhattensis. Arch Biochem Biophys 324:228–240

    Article  Google Scholar 

  • Taylor SW, Waite JH, Ross MM, Shabanowitz J, Hunt DF (1994c):Dihydroxyproline, a new naturally occurring amino acid, is the sixth residue in the tandemly repeated consensus decapeptides of an adhesive protein from Mytilus edulis. J Am Chem Soc 116:10803–10804

    Article  CAS  Google Scholar 

  • Taylor SW, Cashion JD, Brown LJ, Hawkins CJ, Hanson GR (1995): Mössbauer and EPR studies of the binuclear and trinuclear antiferromagnetically coupled iron (III) binding sites in ferreascidin. Inorg Chem 324:228–240

    CAS  Google Scholar 

  • Vitellaro-Zuccarello L (1980): The collagen gland of Mytilus galloprovincialis: An ultrastructural and cytochemical study on secretory granules. J ultrastruct Res 73:135–147

    Article  Google Scholar 

  • Vitellaro-Zuccarello L (1981): Ultrastructural and cytochemical study of the enzyme gland of the foot of a mollusc. Tiss Cell 13:701–713

    Article  Google Scholar 

  • Vitellaro-Zuccarello L, De Biasi S, Bairati A (1983): The ultrastructure of the byssal apparatus of a mussel. V. Localization of the collagenic and elastic components in the threads. Tiss Cell 15:547–554

    Article  CAS  Google Scholar 

  • Voorn MJ (1956): Complex coacervation. I. General theoretical considerations. Rec Trav Chim 75:317–330

    Article  CAS  Google Scholar 

  • Vovelle J (1965): Le tube de Sabellaria alveolata (L) AnnĂ©lide Polychète Hermellidae et son ciment Ă©tude Ă©cologique, expĂ©rimentale, histologique et histochimique. Arch Zool Exp Gen 106:1–180

    Google Scholar 

  • Waite JH (1992): The formation of mussel byssus: Anatomy of a natural manufacturing process. In: Results and Problems in Cell Differentiation, 19, Biopolymers, Case ST, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Waite JH (1990): The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp Biochem Physiol 97B: 19–29

    CAS  Google Scholar 

  • Waite JH, Rice-Ficht AC (1989): A histidine-rich protein fgrom the vitellaria of the liver fluke Fasciola hepatica. Biochemistry 28:6104–6110

    CAS  Google Scholar 

  • Waite JH, Tanzer ML (1980): The bioadhesive of Mytilus byssus: a protein containing L-Dopa. Biochem Biophys Res Commun 96:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Tanzer ML (1981): Specific colorimetric detection of o-diphenols and 3,4-dihydroxyphenylalanine-containing peptides. Anal Biochem 111:131–136

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Housley TJ, Tanzer ML (1985): Peptide repeats in a mussel glue protein:Theme and variations. Biochemistry 24:5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Jensen RA, Morse DE (1992): Cement precursors of the reef-building polychaete Phragmatopoma californica (Fewkes). Biochemistry 31:5733–5738

    Article  PubMed  CAS  Google Scholar 

  • Watters D, Ross IL, McEwan M, La vin MF (1993): Purification and properties of a catecholoxidase from the blood cells of the ascidian Pyura stolonifera. Mol Mar Biol Biotechnol 2:28–40

    PubMed  CAS  Google Scholar 

  • Wells KE, Cordingley JS (1992): The cellular and molecular biology of eggshell formation in Schistosoma mansoni. In: Results and Problems in Cell Differentiation, 19, Biopolymers, Case ST, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Williams TJ, Marumo K, Waite JH, Henkens RW (1989): Mussel glue has an open conformation. Arch Biochem Biophys 269:415–422

    Article  PubMed  CAS  Google Scholar 

  • Wright RK (1981): Urochordates. In: Invertebrate Blood Cells, Vol. 2, Radcliffe NA, Rowley AF, eds. London: Academic Press

    Google Scholar 

  • Yamamoto H, Nagai A (1992): Polypeptide models of the arthropodin protein of the barnacle Balanus balanoides. Mar Chem 37:131–143

    Article  CAS  Google Scholar 

  • Young GA, Crisp DJ (1982): Marine animals and adhesion. In: Adhesion — 6, Allen KW, ed. Barking, England: Applied Science Publishers

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Taylor, S.W., Waite, J.H. (1997). Marine Adhesives: From Molecular Dissection to Application. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics