Skip to main content

Protein-Based Materials with a Profound Range of Properties and Applications: The Elastin ΔTt Hydrophobic Paradigm

  • Chapter
Protein-Based Materials

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

The term protein-based polymer has its origin in a symposium containing that name organized by D.L. Kaplan, M.T. Marron, and D.A. Tirrell (1990). As the term is used here, it refers to polymers comprised of repeating peptide sequences in which the repeats may be as few as two residues or as many as hundreds of residues. In the latter case, properties of protein-based polymers and globular proteins naturally merge. For the former case, there are now known many examples of repeating peptide sequences in proteins. These occur most commonly in proteins that fill structural roles as opposed to the frequently discussed catalytic, transport, or transductional roles of globular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cook WJ, Einspahr HM, Trapane TL, Urry DW (1980): Crystal structure and conformation of the cyclic trimer of a repeat pentapept ide of elastin, cyclo-(LValyl-L-prol ylglycyl-L-valylglycyl)3. J Am Chem Soc 102:5502–5505

    Article  CAS  Google Scholar 

  • Cox BA, Starcher BC, Urry DW (1974):Coacervation of tropoelastin results in fiber formation. J Biol Chem 249:997–998

    PubMed  CAS  Google Scholar 

  • Dill KA, Fiebig FM, Chan HS (1993): Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA 90:1942–1946

    Google Scholar 

  • Dobson CM, Evans PA, Radford SE (1994): Understanding how proteins fold: The lysozyme story so far. Trends Biochem Sci 19:31

    Article  PubMed  CAS  Google Scholar 

  • Ferrari FA, Richardson C, Chambers J, Causey SC (1993): U.S. Patent No. 5,243,038, Construction of Synthetic DNA and Its Use in Large Polypeptide Synthesis

    Google Scholar 

  • Evans PA, Radford SE (1994): Probing the structure of folding intermediates. Curr Op Struct Biol 4:100

    Article  CAS  Google Scholar 

  • Hoban LD, Pierce M, Quance J, Hayward I (1994): The use of polypentapeptides of elastin in the prevention of postoperative adhesions. J Surgical Res 56:179–183

    Article  CAS  Google Scholar 

  • Huang ES, Subbiah S, Levitt M (1995): Recognizing native folds by the arrangement of hydrophobic and polar residues. J Molec Biol 252:709–20

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DL, Marron MT, Tirrell DA (1990): Tutorial on bioengineering of protein-based polymers. 199th National Meeting of the American Chemical Society

    Google Scholar 

  • Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992): Stru cture of fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991

    Article  PubMed  CAS  Google Scholar 

  • Linderström-Lang KU (1952): Proteins and enzymes. In: Lane Medical Lectures. Stanford, CA: Stanford University Press

    Google Scholar 

  • Luan CH, Parker TM, Gowda DC, Urry DW (1992): Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin. Biopolymers 32:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Magid A, Ting-Beall HP, Carvell M, Kontis T, Lucaveche C (1984): Connecting filaments, cone filaments, and side-struts: A proposal to add three new load-bearing structures to the sliding filament model. In: Advances in Experimental Medicine & Biology, Pollack GH, Sugi H, eds. New York: Plenum

    Google Scholar 

  • Maruyama K, Matsubara S, Natori R, Nonmura Y (1977): Connectin, an elastic prot ein of muscle. Characterization and function. J Biochem 82:317–337

    PubMed  CAS  Google Scholar 

  • Maruyama K, Itoh Y, Arisaka F (1986): Circular dichoroism spectra show abundance of beta-sheet structure in connectin, a muscle elastic protein. Febs Lett 202:353–355

    Article  PubMed  CAS  Google Scholar 

  • Matheson RR, Scheraga HA (1978): A Method for predicting nucleation sites for protein folding based on hydrophobic contacts. Macromolecules 11:819

    Article  CAS  Google Scholar 

  • McPherson DT, Morrow C, Minehan C, Wu DS (1992): Production and purification of a recombinant elastomeric polypeptide, G-(VPGVG)19-VPGV, from Escherichia coli. Biotechnol Prog 8:347–352

    CAS  Google Scholar 

  • Nicol A, Gowda DC, Parker TM, Urry DW (1994): Cell adhesive properties of bioelastic materials containing cell attachment sequences. In: Biotechnology of Bioactive Polymers Gebelein CG, Carraher CE, eds. New York: Plenum

    Google Scholar 

  • Nicol A, Gowda DC, Urry DW (1992): Cell adhesion and growth on synthetic elastomeric matrices containing Arg-Gly-Asp-Ser-3, J Biomed Mat Res 26:393–413

    Article  CAS  Google Scholar 

  • Nicol A, Gowda DC, Parker TM, Urry DW (1993): Elastomeric polytetrapeptide matrices: Hydrophobicity dependence of cell attachment from adhesive, (GGIP)n, to nonadhesive, (GGAP)n, even in serum. J Biomed Mater Res 27:801–810

    Article  PubMed  CAS  Google Scholar 

  • Pattanaik A, Gowda DC, Urry DW (1991): Phosphorylation and dephosphorylation modulation of an inverse temperature transition. Biochem Biophys Res Comm 178:539–545

    Article  PubMed  CAS  Google Scholar 

  • Prasad KU, Iqbal MA, Urry DW (1985): Utilization of 1-Hydroxybenzotriazole in mixed anhydride coupling reactions. Int J Pept Protein Res 25:408–413

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1990): Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  PubMed  CAS  Google Scholar 

  • Robinson AB (1974): Evolution and the distribution of glutaminyl and asparaginyl residues in proteins. Proc Natl Acad Sci USA 71:885–888

    Article  PubMed  CAS  Google Scholar 

  • Sandberg LB, Soskel NT, Leslie JB (1981): Elastin structure, biosynthesis, and relation to disease states. N E J Med 304:566–579

    Article  CAS  Google Scholar 

  • Schild HG (1992): Poly(N-Isoproylacrylamide): Experiment, theory, and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  • Trinick J (1991): Elastic filaments and giant proteins in muscle. Curr Opin Cell Biol 3:112–119

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1982): Characterization of soluble peptides of elastin by physical techniques. In: Methods in Enzymology, Cunningham LW, Frederiksen DW, eds. New York: Academic Press

    Google Scholar 

  • Urry DW (1983): What is elastin; What is not. Ultrastruct Pathol 4:227–251

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1991): Thermally driven self-assembly, molecular structuring and entropic mechanisms in elastomeric polypeptides. In: Molecular Conformation and Biological Interactions, Balaram P, Ramaseshan S, eds. Bangalore, India: Indian Academy of Science

    Google Scholar 

  • Urry DW (1992): Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1993): Molecular machines: How motion and other functions of living organisms can result from reversible chemical changes. Angew Chem (German) 105:859–883; Angew Chem Int Ed Eng 32:819–841

    Article  CAS  Google Scholar 

  • Urry DW (1994): Postulates for protein (hydrophobic) folding and function. Int J Quant Chem Quant Biol Symp 21:3–15

    Article  CAS  Google Scholar 

  • Urry DW, Prasad KU (1985): Syntheses, characterizations and medical uses of the polypentapeptide of elastin and its analogs. In: Biocompatibility of Tissue Analogues, Williams DF, ed. Boca Raton, FL: CRC Press

    Google Scholar 

  • Urry DW, Harris CM, Luan CX, Luan CH, et al. (1996a): Transductional protein-based polymers as new controlled release vehicles. In: Part VI: New Biomaterials for Drug Delivery, Controlled Drug Delivery: The Next Generation, K. Park, ed. Washington, DC: Am Chem Soc Professional Reference Book

    Google Scholar 

  • Urry DW, Pattanaik A, Accavitti MA, Luan CX, et al. (1996b): Transductional elastic and plastic protein-based polymers as potential medical devices. In: Handbook of Biodegradable Polymers. Domb, Kost, and Wiseman, eds. Chur, Switzerland: Harwood Academic Publishers

    Google Scholar 

  • Urry DW, Luan CH (1995a): A new hydrophobicity scale and its relevance to protein folding and interactions at interfaces. In Proteins at Interfaces 1994, Horbett TA, Brash JL, eds. Washington, DC: American Chemical Society Symposium Series

    Google Scholar 

  • Urry DW, Luan CH (1995b): Molecular biophysics of elastin structure, function and pathology. In: Proceedings of The Ciba Foundation Symposium No. 192, The Molecular Biology and Pathology of Elastic Tissues. Sussex, UK: John Wiley

    Google Scholar 

  • Urry DW, Long MM (1987): U.S. Patent No. 4,693,718 Stimulation of Chemotaxis by Chemotactic Peptides (Nonapeptide).

    Google Scholar 

  • Urry DW, Venkatachalam CM, Long MM, Prasad KU (1982): Dynamic β-spirals and a librational entropy mechanism of elasticity. In: Conformation in Biology, Srinivasan R, Sarma RH, eds. Adenine Press

    Google Scholar 

  • Urry DW, Gowda DC, Harri s CM, Harris RD (1994a): Bioelastic materials and the ΔTt-mechanism in drug delivery. In: Polymeric Drugs and Drug Administration, Ottenbrite RM, ed. Washington, DC: American Chemical Society Symposium Series 545

    Chapter  Google Scholar 

  • Urry DW, McPherson DT, Xu J, Daniell H (1995a): Protein-based polymeric materials: Syntheses and properties. In: The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications. Boca Raton, FL: CRC Press

    Google Scholar 

  • Urry DW, McPherson DT, Xu J, Gowda DC (1995b): Elastic and plastic proteinbased polymers: Potential for industrial uses. In: Industrial Biotechnological Polymers. Washington, DC: American Chemical Society

    Google Scholar 

  • Urry DW, Nicol A, McPherson DT, Xu J (1995c): Properties, preparation s and applications of bioelastic materials. In: Handbook of Biomaterials and Applications. New York: Marcel Dekker

    Google Scholar 

  • Urry DW, Long MM, Sugano H (1978): Cyclic analog of elastin polyhexapeptide exhibits an inverse temperature-transition leading to crystallization. J Biol Chem 253:6301–6302

    PubMed  CAS  Google Scholar 

  • Urry DW, Luan C-H, Harris RD, Prasad KU (1990a): Aqueous interfacial driving forces in the folding and assembly of protein (elastin)-based polymers: Differential scanning calorimetry studies. Polym Preprints, Am Chem Soc 31:188–189

    CAS  Google Scholar 

  • Urry DW, Peng SQ, Hayes L, Jaggard J (1990b): A New mechanism of mechanochemical coupling: Stretch-induced increase in carboxyl pKa as a diagnostic. Biopolymers 30:215–218

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Parker TM, Reid MC, Gowda DC (1991): Biocompatibility of the bioelastic materials, poly(GVGVP) and its γ-irradiation cross-linked matrix: Summary of generic biological test results. J Bioactive Compatible Polym 6:263–282

    Article  CAS  Google Scholar 

  • Urry DW, Gowda DC, Parker TM, Luan CH (1992a): Hydroph obicity scale for proteins based on inverse temperature transitions. Biopolymers 32:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Gowda DC, Peng SQ, Parker TM (1992b): Design at nanometric dimensions to enhance hydrophobicity-induced pKa shifts. J Am Chem Soc 114:8716–8717

    Article  CAS  Google Scholar 

  • Urry DW, Luan C-H, Peng SQ, Parker TM (1992c): Hierarchical and modulable hydrophobic folding and self-assembly in elastic protein-based polymers: Implications for signal transduction. Mat Res Soc Symp Proc 255:411–422

    Article  CAS  Google Scholar 

  • Urry DW, Gowda DC, Cox BA, Hoban LD (1993a): Properties and prevention of adhesions applications of bioelastic materials. Mat Res Soc Symp Proc 292:253–264

    Article  CAS  Google Scholar 

  • Urry DW, Peng SQ, Parker TM (1993b): Delineation of electrostatic-and hydrophobic-induced pKa shifts in polypentapeptides: The glutamic acid residue. J Am Chem Soc 115:7509–7510

    Article  CAS  Google Scholar 

  • Urry DW, Peng SQ, Parker TM, Gowda DC (1993c): Relative significance of electrostatic and hydrophobic-induced pKa shifts in a model protein: The aspartic acid residue. Angew Chem (German) 105:1523–1525; Angew Chem Int Ed Eng 32:1440–1442

    Article  CAS  Google Scholar 

  • Urry DW, Gowda DC, Peng SQ, Parker TM (1994b): Nanometric design of extraordinary hydrophobicity-induced pKa Shifts for aspartic acid: Relevance to protein mechanisms. Biopolymers 34:889–896

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Peng SQ, Gowda DC, Parker TM (1994c): Comparison of electrostatic-and hydrophobic-induced pKa shifts in polypentapeptides: The lysine residue. Chem Phys Lett 225:97–103

    Article  CAS  Google Scholar 

  • Wang K (1985): Sarcomere-associated cytoskeletal lattices in straited muscle. Review and hypothesis. Cell and Muscle Motility 6:315–369

    PubMed  CAS  Google Scholar 

  • West MW, Hecht MH (1995): Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Science 4:2032–9

    Article  PubMed  CAS  Google Scholar 

  • Yeh H, Ornstein-Goldstein N, Indik Z, Sheppard P (1987): Sequence variation of bovine elastin mRNA due to alternative splicing. Collagen Relat Res 7:235–247

    Article  CAS  Google Scholar 

For Further Information

  • Urry, D.W. 1993. “Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes,” Angew. Chem. (German) 105: 859–883; Angew. Chem. Int. Ed. Engl., 32: 819–841.

    Google Scholar 

  • Urry, D.W. 1994. “Postulates for Protein (Hydrophobic) Folding and function,” Int. J. Quant. Chem.: Quant. Biol. Symp. 21: 3–15.

    Google Scholar 

  • Urry, D.W., Gowda, D.C., Peng, S.Q. and Parker, T.M. 1992. “Design at Nanometric Dimensions to Enhance Hydrophobicity-induced pKa Shifts,” J. Am. Chem. Soc. 114: 8716–8717.

    Google Scholar 

  • Urry, D.W., Peng, S.Q. and Parker, T.M. 1993. “Delineation of Electrostatic-and Hydrophobic-Induced pKa Shifts in Polypentapeptides: The Glumatic Acid Residue,” J. Am. Chem. Soc. 115: 7509–7510.

    Google Scholar 

  • Urry, D.W., Peng, S.Q., Parker, T.M. and Gowda, C.D. 1993. “Relative Significance of Electrostatic- and Hydrophobic-Induced pKa Shifts in a Model Protein: The Aspartic Acid Residue,” Angew. Chem. (German) 105:1523–1525; Angew. Chem. Int. Ed.( Engl.), 32: 1440–1442.

    Google Scholar 

  • Urry, D.W., Gowda, D.C., Peng, S.Q. and Parker, T.M. 1994. “Nanometric Design of Extraordinary Hydrophobicity-induced pKa Shifts for Aspartic Acid: Relevance to Protein Mechanisms,” Biopolymers, 34: 889–896.

    Google Scholar 

  • Urry, D.W., Peng, S.Q., Gowda, and D.C. Parker, T.M. 1194. “Comparison of Electrostatic- and Hydrophobic-induced pKa Shifts in Polypentapeptides: The Lysine Residue,” Chemical Physics Letters 225: 97–103.

    Google Scholar 

  • Urry, D.W., Nicol, A., McPherson, D.T., and Xu, J. et al., 1995c. “Properties, Preparations and Applications of Bioelastic Materials,” In Handbook of Biomaterials and Applications, Marcel Dekker, Inc., New York, NY, pp. 1619–73.

    Google Scholar 

  • Urry, D.W., McPherson, D.T., Xu, J., and Daniell, H. et al., 1995a. “Protein-Based Polymeric Materials: Syntheses and Properties” in The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications, CRC Press, Boca Raton, FL (in press).

    Google Scholar 

  • Urry, D.W. 1995, January. “Elastic Biomolecular Machines: Energy Conversion and Insight into Diverse Biological Processes and Materials Applications,” Scientific American 80–86.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Urry, D.W., Luan, CH., Harris, C.M., Parker, T.M. (1997). Protein-Based Materials with a Profound Range of Properties and Applications: The Elastin ΔTt Hydrophobic Paradigm. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics