Skip to main content

Processing and Characterization of Protein Polymers

  • Chapter
Protein-Based Materials

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

High molecular weight synthetic poly(peptides) of precisely controlled amino acid composition and sequence can be produced by the genetic engineering of Escherichia coli bacteria. By this route, novel protein polymers can be synthesized with combinations of amino acid sequences not found in any known natural polypeptide. Such well-defined biomaterials are of interest for a number of applications including cellular adhesion promoters, biosensors, and suture materials (Capperauld, 1989; Hubbell, 1993; Cappello et al., 1990; Cappello and Crissman, 1990; Cappello et al., 1990a, 1990b; Tirrell et al., 1991). By changing the composition of the protein, it is possible to control its biological activity and degradability. The ability to manipulate the three-dimensional structure of biopolymers may have significant implications for tissue engineering (Hubbell and Langer, 1995; Langer and Vacanti, 1993). To be successful in these applications, it will be necessary to determine how to process protein polymers into assemblies with desirable microstructural arrangements. Although the general feasibility of the genetic approach to protein molecular design and expression is now fairly well established, a fundamental understanding of appropriate processing methods, microstructural evolution, and the macroscopic properties of protein materials is only just beginning to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose EJ, Bamford CH, Elliott A, Hanby WE (1951): Water-soluble silk: An α-Protein, Nature 168:264–265

    Article  Google Scholar 

  • Anderson JP, Nilsson SC, Rajachar RM, Logan R, Weissman NA, Martin DC (1994a): Bioactive silk-like protein polymer films on silicon devices. In: Biomolecular Materials by Design, Alper M, Bayby H, Kaplan D, Navia M, eds. Proceeding of the Materials Research Society Symposium, v.330, Materials Research Society, Pittsburgh, PA, pp. 171–177

    Google Scholar 

  • Anderson JP, Stephen-Hassard M, Martin DC (1994b): Structural evolution of genetically engineered silklike protein polymers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan D, Adams WW, Farmer B, Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Anderson JP, Cappello J, Martin DC (1994c): Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria, Biopolymers 34:1049–1058

    Article  PubMed  CAS  Google Scholar 

  • Aubert JH (1990): Structural coarsening of demixed polymer solutions. Macromolecules 23:1146–1452

    Article  Google Scholar 

  • Bamford CH, Elliott A, Hanby WE (1956): Synthetic Polypeptides: Preparation, Structure, and Properties, New York: Academic Press

    Google Scholar 

  • Beecher JE, Kothakota S, Fournier M, Mason TL, Tirrell DA, Larmat F, Reynolds JR (1995): Periodic Proteins Containing Electroactive Subtituents. Polymer Preprints 36:154

    CAS  Google Scholar 

  • Broadway PJ, Zhang WP, Gido SP (1995): Morphological investigation of liquid crystalline phases in natural silk spinning processes. Bull Am Phys Soc 40:549

    Google Scholar 

  • Bornat A (1982): Electrostatic Spinning of Tubular Products. US Patent No. 4,323,525

    Google Scholar 

  • Bornat A (1987): Production of Electrostatically Span Products. US Patent No. 4,689,186

    Google Scholar 

  • Canetti M, Seves A, Secundo F, Vecchio G (1989): CD and small-angle X-ray scattering of silk fibroin in solution. Biopolymers 28:1613–1624

    Article  PubMed  CAS  Google Scholar 

  • Cappello J, McGrath KP (1994): Spinning of protein polymer fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan D, Adams WW, Farmer B, Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari FA (1990a): The genetic production of synthetic crystalline protein polymers. In: Proceedings of the Materials Research Society Symposium

    Google Scholar 

  • Cappello J (1992): Genetic production of synthetic protein polymers. Mat Res Soc Bull 17:48–53

    CAS  Google Scholar 

  • Cappello J, Crissman JW (1990): The design and production of bioactive protein polymers for biomedical applications. Polymer Preprints 31:193–194

    CAS  Google Scholar 

  • Cappello J, Crissman JW, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990b): Genetic engineering of structural protein polymers. Biotech Prog 6:198–202

    Article  CAS  Google Scholar 

  • Cappello J, Textor G, Bauerle B (1994): Bioresorption of implanted protein polymer films controlled by adjustment of their silk/elastin block lengths. in press

    Google Scholar 

  • Capperauld I (1989): Suture materials: A review, Clin Mat 4:13–22

    Article  Google Scholar 

  • Cappello J (1993) Private communications

    Google Scholar 

  • Cheng L-P, Dwan A-H, Gryte CC (1994) Isothsmal Phuse Behavior of Nylon-6, Nylon-66, and Nylon-610 Polyamides in Formic Acid-Water Systems. J Poly Sci, B Poly Phys Ed 32:1183–1190

    Article  CAS  Google Scholar 

  • Chu G, Halloran J (1996): Unpublished results

    Google Scholar 

  • Chun I, Reneker DH (1994): Fine fibers spun by electrospinning process from solution and melt. In: Abstracts Presented at the 35th IUPAC Meeting. Akron, Ohio

    Google Scholar 

  • Cloupeau M, Prunet-Foch B (1990): Electrostatic Spraying of Liquids: Main Fanctioning Modes. J Electrostatics 25:165–184

    Article  CAS  Google Scholar 

  • Cunniff PM, Fossey SA, Auerbach MA, Song JW (1994): Mechanical properties of major ampulate gland silk fibers extracted from Nephilia clavipes spiders. In: Silk Polymers: Materials Science and Biotechnology, Kaplan D, Adams WW, Farmer B, Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Doshi J, Reneker DH (1993): Electrospinning process and applications of electrospun fibers. In: Electrostatics in Polymer Processing, IEEE Industry Applications. Piscataway, NJ

    Google Scholar 

  • Doshi J, Reneker DH (1992): Electrospinning of polymer fibers, Bull Am Phys Soc 37:414

    Google Scholar 

  • Doshi J, Reneker DH (1995): Electrospinning process and applications of electrospun fibers, J Electrostatics 35:151–160

    Article  CAS  Google Scholar 

  • de Gennes PG (1979): Scaling Concepts in Polymer Physics. Ithaca, NY: Cornell University Press

    Google Scholar 

  • Esty A (1991): Receptor-specific Serum-free Cell Attachment Using a Highly Stable Engineered Protein Polymer. American Biotechnology Laboratory

    Google Scholar 

  • Fang X, Reneker DH (1994): DNA fiber spun by electrospinning. In: Abstracts Presented at the 35th IUPAC Meeting. Akron, Ohio: The University of Akron, Akron OH

    Google Scholar 

  • Ferreira M, Rubrer MF (1995): Molecular-level Processing of Conjugated Polymers. 1. Layer-by-Layer Manipulation of Conjugated Polyanions. Macromolecules 28(21):7107–7114

    Article  CAS  Google Scholar 

  • Flory PJ (1953): Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press

    Google Scholar 

  • Formhals A (1938): US Patent No. 2,116,942, Methods and Apparatus for the Production of Fibers

    Google Scholar 

  • Fou AC, Rubner MF (1995): Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers, Macromolecules 28:7115–7119

    Article  CAS  Google Scholar 

  • Fraser RDB, McRae TP (1973): Conformation in Fibrous Proteins and Related Synthetic Polypeptide. New York: Academic Press

    Google Scholar 

  • How TV (1985): Synthetic Vacular Crafts, and Methods of Manufacturing Such Crafts. US Patent No. 4,552,707

    Google Scholar 

  • Hubbell JA (1993): Chemical modification of polymer surfaces to improve biocompatibility. Trends in Polymer Sci 2:20–25

    Google Scholar 

  • Hubbell J, Langer R (1995): Tissue engineering. Chem Eng News (March) v.73(11):42–53

    Article  CAS  Google Scholar 

  • Ikada Y (1985): Bioabsorbable fibers for medical use. In: High Technology Fibers, Part B, Handbook of Fiber Science and Technology, Vol. 3, Lewin M, Preston J, eds. New York: Marcel Dekker

    Google Scholar 

  • Irwin R (1993): Chain folding in thermotropic polyesters. Macromolecules 26:7125–7133

    Article  CAS  Google Scholar 

  • Johnson M (1995): Unpublished research

    Google Scholar 

  • Jones M-CG, Martin DC (1995): Molecular stress and strain in an oriented extended-chain polymer of finite molecular length. Macromolecules 28:6161–6174

    Article  CAS  Google Scholar 

  • Kaplan DL, Lombardi SJ, Muller WS, Fossey SA (1991): 1. Silks. In: Biomaterials: Novel Materials from Biological Sources. New York: Stockton Press

    Google Scholar 

  • Kaplan DL, Fossey S, Mello CM, Arcidiacono S, Senecal K, Muller W, Stockwell S, Bechwiff R, Viney C, Kerkam K (1992): Biosynthesis and processing of silk proteins, Mat Res Soc Bull 17(10)

    Google Scholar 

  • Kerkam K, Viney C, Kaplan D, Lombardi S (1991): Liquid crystallinity of natural silk secretions. Nature 349:596

    Article  CAS  Google Scholar 

  • Kratky O, Schauenstein E, Sekora A (1950): An unstable lattice in silk fibroin. Nature 165:319–320

    Article  CAS  Google Scholar 

  • Langer R, Folkman J (1978): Sustained release of macromolecules from polymers. In: Polymeric Delivery Systems, Kostelnik RJ, ed. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Langer R, Vacanti JP (1993): Tissue engineering Science. 260:920–925

    Article  PubMed  CAS  Google Scholar 

  • Larrondo L, Manley RS (1981a): Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties, J Polymer Sci Polymer Phys Ed 19:909–920

    Article  CAS  Google Scholar 

  • Larrondo L, Manley RS (1981b): Electrostatic fiber pinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polymer Sci Polymer Phys Ed 19:921–932

    Article  CAS  Google Scholar 

  • Larrondo L, Manley RS (1981c): Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polymer Sci Polymer Phys Ed 19:933–940

    Article  CAS  Google Scholar 

  • Lock RL (1992a): A process for spinning polypeptide fiber. European Patent No. 9310948.4

    Google Scholar 

  • Lock RL (1992b): US Patent No. 5,171,505

    Google Scholar 

  • Lock RL (1993): Process for making silk fibroin fibers, US Patent No. 5,252,285

    Google Scholar 

  • Lotz B, Cesari FC (1979): The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochemie 61:205–214

    Article  CAS  Google Scholar 

  • Lotz B, Keith HG (1971): Crystal structure of poly(l-Ala-Gly)II: A model for silk I. J Mol Biol 61:201–215

    Article  PubMed  CAS  Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1994): Mechanism of fiber formation of silkworm. In: Silk Polymers: Materials Science and Biotechnology, Kaplan D, Adams WW, Farmer B, Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1985): Crystallization, liquid crystal, and fiber formation of silk fibroin. J Appl Poly Sci 41:187–204

    CAS  Google Scholar 

  • Marinaccio PJ, Knight RA (1975): Process for producing microporous films and products. US Patent No. 3,876,738

    Google Scholar 

  • Martin GE (1977): Fibrillar Lining for Prosthetic Device. US Patent No. 4,044,404

    Google Scholar 

  • Michelson D (1990): Electrostatic Atomization. Bristol, England: Adam Hilger

    Google Scholar 

  • Peppas NA, Buri PA (1985): Surface, Interfacial and Molecular Aspects of Polymer Bioadhesion on Soft Tissues. J of Controlled Release 2:257–266

    Article  CAS  Google Scholar 

  • Peppas NA, Langer R (1994): New challenges in biomaterials. Science 263:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Phillies GDJ (1995): Hydrodynamic scaling of viscosity and viscoelasticity of polymer solution, including chain architecture and solvent quality effects. Macromolecules 28:8198–8208

    Article  CAS  Google Scholar 

  • Reimer L (1984): Physics of Image Formation and Microanalysis. Berlin: Springer Verlag

    Google Scholar 

  • Reneker DH, Dzenis YA (1995): Composites reinforced with both microfibers and nanofibers. Bull Am Phys Soc 40:481

    Google Scholar 

  • Reneker DH, Srinivasan G (1995): Electrospun polyaramid fibers: Structure and morphology. Bull Am Phys Soc 40:351

    Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987): New persperctives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  • Shalaby SW (1985): Fibrous materials for biomedical applications. In: High Technology Fibers, Part A, Handbook of Fiber Science and Technology, Vol. 3, Lewin M, Preston J, eds. New York: Marcel Dekker

    Google Scholar 

  • Shutov FA (1991): Blowing agents for polymer foams. In: Handbook of Polymeric Foams and Foam Technology, Klempner D, Frisch KC, eds. Munich: Hanser Publishers

    Google Scholar 

  • Simm W et al. (1978): Filter made of electrostalically span fibers. US Patent No. 4,069,026

    Google Scholar 

  • Simm W et al. (1979): Fiber fleece of electroslatically span fibers and methods of making same. US Patent No. 4,143,196

    Google Scholar 

  • Simons HL (1967): Process and Apparatus for Producing Patterned Nonwoven Fabrics. US Patent No. 3,280,229

    Google Scholar 

  • Song SW, Torkelson JM (1994): Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation. Macromolecules 27:6389–6397

    Article  CAS  Google Scholar 

  • Srinivasan G, Reneker DH (1994a): Structure and morphological characterization of nanometer scale electrospun polyaramid fibers. In: Abstracts Presented at the 35th IUPAC Meeting. Akron, Ohio: The University of Akron

    Google Scholar 

  • Srinivasan G, Reneker D (1994b): Structure and morphology of electrospun small diameter polyaramid fibers. Bull Am Phys Soc 39:633

    Google Scholar 

  • Taylor GI (1969): Electrically Driven Jets. Proc R Soc London Ser A313:453

    Article  Google Scholar 

  • Tirrell DA, Fournier MJ, Mason TL (1991a): Genetic engineering of polymeric materials. Mat Res Soc Bull 16(7):23

    CAS  Google Scholar 

  • Tirrell DA, Fournier MJ, Mason TL (1991b): Protein engineering for materials applications. Cur Opin Struct Biol 1:638–641

    Article  CAS  Google Scholar 

  • Urry DW, Okamoto K (1976): US Patent No. 4,132,746

    Google Scholar 

  • Urry DW (1984): J Prot Chem 3:403–436

    Article  CAS  Google Scholar 

  • Urry DW, Okamoto K, Harris RD, Hendrix CF, Long MM (1976): Biochemistry 15:4083

    Article  PubMed  CAS  Google Scholar 

  • Uy WC (1993): Process for spinning polypeptide fibers from solutions of lithium thiocyanate and liquified phenol. US Patent No. 5,252,277

    Google Scholar 

  • van de Witte P, Boorsma A, Esselbrugge H, Dijkstra PJ, van den Berg JWA, Feijen J (1966): Differential scanning calorimetry study of phase transitions in poly(lactide) — chloroform — methanol systems. Macromolecules 29:212–219

    Article  Google Scholar 

  • Viney C, Kerkam K, Gilliland M, Kaplan D, Fossey S (1992): Molecular order in silk secretions. In: Complex Fluids, Sirota EB, Weitz D, Witten T, Israelachvili J, eds. Pittsburgh, PA: Materials Research Society

    Google Scholar 

  • Warner SB (1995): Fiber Science. NJ: Prentice-Hall

    Google Scholar 

  • Williams DRM, Warner M (1990): Statics and dynamics of hairpins in worm-like main chain nematic polymer liquid crystals. J Phys France 51:317–339

    Article  Google Scholar 

  • Wise KD, Najafi K (1991): Microfabrication techniques for integrated sensors and microsystems. Science 254:1335–1342

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Martin, D.C., Jiang, T., Buchko, C.J. (1997). Processing and Characterization of Protein Polymers. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics