Skip to main content

Synthetic vs Analytic Geometry for Computers

  • Chapter

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 14))

Abstract

Computer geometry usually means analytic geometry. Analytic geometry usually means Cartesian coordinates and Euclidean geometry. We consider alternatives: synthetic geometries, such as projective geometry, and coordinate-free analytic geometries. Using classical invariants and Cayley algebra (extended exterior algebra), we describe translations from coordinate analytic geometry to coordinate-free ‘invarant’ analytic geometry and the unsolved problem of translating back to synthetic geometry. The goal is to include more appropriate geometry in computer-aided geometry - and produce ‘better’ proofs from Automated Theorem Provers.

This work was supported by grants from FCAR (Québec) and NSERC (Canada).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R. Arnheim, Visual Thinking, University of California Press, Berkeley, Los Angeles, London. 1969

    Google Scholar 

  2. J. Baracs, Spatial perception and creativity; in Shaping Space: A Polyhedral Approach, (M. Senechal and G. Fleck eds.), Birkhauser, Boston, 118–132. 1988

    Google Scholar 

  3. R. Baer. Linear Algebra and Projective Geometry, Academic Press, New York. 1952

    MATH  Google Scholar 

  4. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics 1355, Springer-Verlag, Berlin, Heidelberg, New York. 1990

    Google Scholar 

  5. T. Brylawski, Constructions; in Theory of Matroids, (N. White ed.), Encyclopedia of Mathematics, Cambridge University Press, New York, 127–223. 1986a.

    Google Scholar 

  6. T. Brylawski, Appendix of matroid cryptomorphisms; in Theory of Matroids, (N. White ed.), Encyclopedia of Mathematics, Cambridge University Press, New York, 298–312. 1986b.

    Google Scholar 

  7. M. Chasles, Aperçu Historique des Méthodes en Geometrie, Paris. 1875

    Google Scholar 

  8. S-C. Chou, Mechanical Geometry Theorem Proving, Mathematics and its applications Vol 41, D. Reidel Pub. Co.; Norwell, MA, U.S.A. 1988

    Google Scholar 

  9. P. Doubilet, G-C Rota and J. Stein, On the foundations of combinatorial theory IX: Combinatorial Methods in Invariant Theory, Studies in Applied Math. 56, 185–216. 1976

    MathSciNet  Google Scholar 

  10. D. Forsyth, J. Mundy and A. Zisserman, Applications of invariant theory in computer vision, preprint, Robotics Research Group, Department of Engineering Science, Oxford University, England. 1990

    Google Scholar 

  11. T. Havel, B. Sturmfels and N. White, Proposal for a geometric algebra software package, SIGSAM Bulletin 23, p. 13–15 1989

    Article  MATH  Google Scholar 

  12. F. Klein, Vergleichende Betrachtungen über neure geometrische Forschungen, Erlangen, (Math. Annalen 43, p63-). 1872

    Google Scholar 

  13. F. Klein, Elementary Mathematics from an Advanced Standpoint: Geometry, Dover, New York. 1948

    Google Scholar 

  14. F. Nicoletti and N. White, Axiom systems; in Theory of Matroids, (N. White ed.), Encyclopedia of Mathematics, Cambridge University Press, New York, 29–44. 1986

    Google Scholar 

  15. R. Ornstein, The Psychology of Conciousness, Penguin, New York. 1975

    Google Scholar 

  16. P. Sennet, Note sur une class particulate de décagones gauches inscriptable à l’ellipsöide, Comptes Rendus (Paris) 82, 162–165. 1876

    Google Scholar 

  17. J. Seligman, An algebraic appreciation of diagrams, manuscript, Philosophy Dept., Indiana University. Available by anonymous ftp from phil.indiana.edu as/pub/Seligman/aad.ps.z. 1995

    Google Scholar 

  18. K. Sugihara, Machine Interpretation of Line Drawings, MIT Press Cambridge MA. 1986

    Google Scholar 

  19. B. Sturmfels and N. White, Grobner bases and invariant theory, Advances in Mathematics 76, 245–259. 1989

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Sturmfels and W. Whiteley, On the synthetic factorization of projectively invariant polynomials, J. Symbolic Computation 11, Special Issue on Invariant Theoretic Methods in Symbolic Computational Geometry, 439–453. 1991

    Article  MathSciNet  MATH  Google Scholar 

  21. H.W. Turnbull and A. Young, The linear invariants of ten quaternary quadrics, Trans. Cambridge Puil. Soc. 23, 265–301. 1926

    Google Scholar 

  22. L.G. Valiant, A theory of the learnable, Comm. of the ACM Vol. 27, 1134–1142. 1984

    Article  MATH  Google Scholar 

  23. N. White, Cay ley factorization of multilinear bracket polynomials, J. Symbolic Computation 11, Special Issue on Invariant Theoretic Methods in Symbolic Computational Geometry, 421–438. 1991

    Article  MATH  Google Scholar 

  24. N. White and W. Whiteley, The algebraic geometry of stresses in frameworks, SIAM Journal of Algebraic and Discrete Methods 4, 481–511. 1984

    Article  MathSciNet  Google Scholar 

  25. W. Whiteley, Logic and invariant theory I: invariant theory of projective spaces, Trans. Amer. Math. Soc. 177, 121–139. 1973

    MathSciNet  MATH  Google Scholar 

  26. W. Whiteley Logic and invariant theory III. Axiom systems and syzygies, J. London Math. Soc. (2) 115, 1–15. 1977

    Article  MathSciNet  Google Scholar 

  27. W. Whiteley Logic and invariant theory IV, invariants and syzygies in combinatorial geometry, J. Combinatorial Theory B 26, 251–267. 1979

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Whiteley Two algorithms for polyhedral pictures, Proceedings of the Second ACM Conference on Computational Geometry, 142–149. 1986

    Google Scholar 

  29. W. Whiteley, Logic and invariant computation for analytic geometry, J. Symbolic Computation 11, Special Issue on Invariant Theoretic Methods in Symbolic Computational Geometry, 549–578. 1991

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Whiteley Matroids and rigidity, in Matroid Applications, Neil White (ed.), Cambridge University Press, to appear. 1993

    Google Scholar 

  31. W. Whiteley Representing Geometric Configurations, this volume. 1995

    Google Scholar 

  32. Wu Wentsun, Basic principles of mechanical theorem-proving in elementary geometries, J. of Sys. Science. &; Math. Sciences. 4, 207–235. 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Whiteley, W. (1996). Synthetic vs Analytic Geometry for Computers. In: Kueker, D.W., Smith, C.H. (eds) Learning and Geometry: Computational Approaches. Progress in Computer Science and Applied Logic, vol 14. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4088-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4088-4_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8646-2

  • Online ISBN: 978-1-4612-4088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics