Skip to main content

Some Transcendental Numbers

  • Chapter
The Book of Numbers
  • 1711 Accesses

Abstract

In this chapter we’ll meet some numbers that transcend the bounds of algebra. The most famous ones are Ludolph’s number π, Napier’s number e, Liouville’s number l, and various logarithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alan Baker. Approximations to the logarithms of certain rational numbers. Acta Arith. 10 (1964): 315–323; MR 30 #1976.

    Article  MathSciNet  Google Scholar 

  • Alan Baker. Linear forms in the logarithms of algebraic numbers, I, II, III, IV. Mathematika, 13 (1966): 204–216

    Article  Google Scholar 

  • 14 (1967): 102–107

    Article  Google Scholar 

  • 14 (1967): 220–228

    Article  Google Scholar 

  • 15 (1968): 204–216; MR 36 #3732; 41 #3402.

    Article  Google Scholar 

  • W.W. Rouse Ball and H.S.M. Coxeter. Mathematical Recreations & Essays 12th edition. Univ. of Toronto Press, 1974, 347–359.

    Book  Google Scholar 

  • G.L. Dinchlet J. für Math. 18 (1838): 273.

    Google Scholar 

  • Leonhard Euler. Introductio in Analysin Infinitorum. Lausanne, 1748.

    MATH  Google Scholar 

  • Ch. Hermite. Sur la fonction exponentielle. C. R. Acad. Sci. Paris 77 (1873): 18–24

    MATH  Google Scholar 

  • 74–79

    MATH  Google Scholar 

  • 226–233.

    MATH  Google Scholar 

  • Ferdinand Lindemann. Ueber die Zahl π. Math. Ann. 20 (1882): 213–225.

    Article  MathSciNet  Google Scholar 

  • J. Liouville. Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques. C. R. Acad. Sci. Paris 18 (1844): 883–885, 910–911

    Google Scholar 

  • J. Math. pures appl. (1), 16(1851): 133–142.

    Google Scholar 

  • T.H. O’Beirne. Puzzles and Paradoxes. Oxford University Press London, 1965, 195–197.

    MATH  Google Scholar 

  • John R. Pierce. The Science of Musical Sound. Sci. Amer. Library, W.H. Freeman, New York, 1983.

    Google Scholar 

  • Alfred J. van der Poorten. A proof that Euler missed… Apéry’s proof of the irrationality of ζ(3). Math. Intelligencer, 1 (1978/79): 195–203; MR 80i: 10054.

    Article  Google Scholar 

  • Ch.-J. de la Vallée Poussin. Annales de la Soc. Sci. Bruxelles 22 (1898): 84–90.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Conway, J.H., Guy, R.K. (1996). Some Transcendental Numbers. In: The Book of Numbers. Copernicus, New York, NY. https://doi.org/10.1007/978-1-4612-4072-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4072-3_9

  • Publisher Name: Copernicus, New York, NY

  • Print ISBN: 978-1-4612-8488-8

  • Online ISBN: 978-1-4612-4072-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics