Abstract
Although arithmeticians have studied prime numbers for thousands of years, there are even more open problems today than there have ever been before. Most of the positive integers can be expressed as the product of smaller ones; such products are called composite numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
C.L. Baker and F.J. Gruenberger. The First Six Million Prime Numbers. Microcard Foundation, Madison, WI, 1953.
P.T. Bateman, J.L. Selfridge and S.S. Wagstaff. The new Mersenne conjecture. Amer. Math. Monthly, 96 (1989): 125–128; MR 90c: 11009.
Richard P. Brent and John M. Pollard. Factorization of the eighth Fermat number. Math.Comput. 36 (1981): 627–630; MR 83h: 10014.
Richard P. Brent, G.L. Cohen & H.J.J. te Riele. Improved techniques for lower bounds for odd perfect numbers, Math. Comput., 57 (1991) 857–868; MR 92c: 11004.
John Brillhart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and S.S. Wagstaff. Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemp. Math., 22, Amer. Math. Soc., Providence, RI, 1983, 1988; MR 84k: 10005, 90d: 11009.
John Brillhart, Peter L. Montgomery, and Robert D. Silverman. Tables of Fibonacci and Lucas factorizations. Math. Comput., 50 (1988): 251–260 and S1–S15.
Richard E. Crandall, J. Doenias, C. Norrie, and Jeff Young. The twenty-second Fermat number is composite. Math. Comput, 64 (1995): 863–868.
William John Ellison, and M. Mendes-France. Les Nombres Premiers. Hermann, Paris, 1975; translated William and Fern Ellison, Prime Numbers, Wiley, New York, 1985.
Martin Gardner. The Sixth Book of Mathematical Games. W.H. Freeman, San Francisco, 1963; Chapter 9, Patterns and Primes.
Martin Gardner. The remarkable lore of prime numbers. Scientific Amer., 210 no. 3 (Mar. 1964): 120–128.
Richard K. Guy. Conway’s prime producing machine. Math. Mag. 56 (1983): 26–33.
Richard K. Guy. Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, New York, 1994; Chapter A, Prime Numbers.
A.M. Legendre. Essai sur la Théorie des Nombres, Duprat, Paris, 1808.
R. Sherman Lehman. On the difference π(x) — li(x). Acta Arith. 11 (1966): 397–410; MR 34 #2546.
J.E. Littlewood. Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris, 158(1914): 1869–1872.
Paulo Ribenboim. The Book of Prime Number Records. Springer-Verlag, New York, 1988.
Paulo Ribenboim. The Little Book of Big Primes. Springer-Verlag, New York, 1991.
G.F.B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 1859, 671.
Hans Riesel. Prime Numbers and Computer Methods for Factorization. Birkhaüser, Boston, 1985.
Michael Rubinstein and Peter Sarnak. Chebyshev’s bias, Experimental Math., 3(1994) 173–197.
Jeff Young and Duncan Buell. The twentieth Fermat number is composite.Math. Comput. 50 (1988): 261–263.
Rights and permissions
Copyright information
© 1996 Springer-Verlag New York, Inc.
About this chapter
Cite this chapter
Conway, J.H., Guy, R.K. (1996). The Primacy of Primes. In: The Book of Numbers. Copernicus, New York, NY. https://doi.org/10.1007/978-1-4612-4072-3_5
Download citation
DOI: https://doi.org/10.1007/978-1-4612-4072-3_5
Publisher Name: Copernicus, New York, NY
Print ISBN: 978-1-4612-8488-8
Online ISBN: 978-1-4612-4072-3
eBook Packages: Springer Book Archive