Skip to main content

The Primacy of Primes

  • Chapter
The Book of Numbers

Abstract

Although arithmeticians have studied prime numbers for thousands of years, there are even more open problems today than there have ever been before. Most of the positive integers can be expressed as the product of smaller ones; such products are called composite numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C.L. Baker and F.J. Gruenberger. The First Six Million Prime Numbers. Microcard Foundation, Madison, WI, 1953.

    Google Scholar 

  • P.T. Bateman, J.L. Selfridge and S.S. Wagstaff. The new Mersenne conjecture. Amer. Math. Monthly, 96 (1989): 125–128; MR 90c: 11009.

    Article  MathSciNet  Google Scholar 

  • Richard P. Brent and John M. Pollard. Factorization of the eighth Fermat number. Math.Comput. 36 (1981): 627–630; MR 83h: 10014.

    Article  MathSciNet  Google Scholar 

  • Richard P. Brent, G.L. Cohen & H.J.J. te Riele. Improved techniques for lower bounds for odd perfect numbers, Math. Comput., 57 (1991) 857–868; MR 92c: 11004.

    Article  MathSciNet  Google Scholar 

  • John Brillhart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and S.S. Wagstaff. Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemp. Math., 22, Amer. Math. Soc., Providence, RI, 1983, 1988; MR 84k: 10005, 90d: 11009.

    Google Scholar 

  • John Brillhart, Peter L. Montgomery, and Robert D. Silverman. Tables of Fibonacci and Lucas factorizations. Math. Comput., 50 (1988): 251–260 and S1–S15.

    Article  MathSciNet  Google Scholar 

  • Richard E. Crandall, J. Doenias, C. Norrie, and Jeff Young. The twenty-second Fermat number is composite. Math. Comput, 64 (1995): 863–868.

    Article  MathSciNet  Google Scholar 

  • William John Ellison, and M. Mendes-France. Les Nombres Premiers. Hermann, Paris, 1975; translated William and Fern Ellison, Prime Numbers, Wiley, New York, 1985.

    MATH  Google Scholar 

  • Martin Gardner. The Sixth Book of Mathematical Games. W.H. Freeman, San Francisco, 1963; Chapter 9, Patterns and Primes.

    Google Scholar 

  • Martin Gardner. The remarkable lore of prime numbers. Scientific Amer., 210 no. 3 (Mar. 1964): 120–128.

    Article  Google Scholar 

  • Richard K. Guy. Conway’s prime producing machine. Math. Mag. 56 (1983): 26–33.

    Article  MathSciNet  Google Scholar 

  • Richard K. Guy. Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, New York, 1994; Chapter A, Prime Numbers.

    Book  Google Scholar 

  • A.M. Legendre. Essai sur la Théorie des Nombres, Duprat, Paris, 1808.

    MATH  Google Scholar 

  • R. Sherman Lehman. On the difference π(x) — li(x). Acta Arith. 11 (1966): 397–410; MR 34 #2546.

    Article  MathSciNet  Google Scholar 

  • J.E. Littlewood. Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris, 158(1914): 1869–1872.

    MATH  Google Scholar 

  • Paulo Ribenboim. The Book of Prime Number Records. Springer-Verlag, New York, 1988.

    Book  Google Scholar 

  • Paulo Ribenboim. The Little Book of Big Primes. Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  • G.F.B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 1859, 671.

    Google Scholar 

  • Hans Riesel. Prime Numbers and Computer Methods for Factorization. Birkhaüser, Boston, 1985.

    Book  Google Scholar 

  • Michael Rubinstein and Peter Sarnak. Chebyshev’s bias, Experimental Math., 3(1994) 173–197.

    Article  MathSciNet  Google Scholar 

  • Jeff Young and Duncan Buell. The twentieth Fermat number is composite.Math. Comput. 50 (1988): 261–263.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Conway, J.H., Guy, R.K. (1996). The Primacy of Primes. In: The Book of Numbers. Copernicus, New York, NY. https://doi.org/10.1007/978-1-4612-4072-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4072-3_5

  • Publisher Name: Copernicus, New York, NY

  • Print ISBN: 978-1-4612-8488-8

  • Online ISBN: 978-1-4612-4072-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics