The Primacy of Primes

  • John H. Conway
  • Richard K. Guy


Although arithmeticians have studied prime numbers for thousands of years, there are even more open problems today than there have ever been before. Most of the positive integers can be expressed as the product of smaller ones; such products are called composite numbers.


Prime Number Decimal Digit Fermat Number Binary Expansion Composite Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.L. Baker and F.J. Gruenberger. The First Six Million Prime Numbers. Microcard Foundation, Madison, WI, 1953.Google Scholar
  2. P.T. Bateman, J.L. Selfridge and S.S. Wagstaff. The new Mersenne conjecture. Amer. Math. Monthly, 96 (1989): 125–128; MR 90c: 11009.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Richard P. Brent and John M. Pollard. Factorization of the eighth Fermat number. Math.Comput. 36 (1981): 627–630; MR 83h: 10014.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Richard P. Brent, G.L. Cohen & H.J.J. te Riele. Improved techniques for lower bounds for odd perfect numbers, Math. Comput., 57 (1991) 857–868; MR 92c: 11004.MathSciNetCrossRefzbMATHGoogle Scholar
  5. John Brillhart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and S.S. Wagstaff. Factorizations of b n ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemp. Math., 22, Amer. Math. Soc., Providence, RI, 1983, 1988; MR 84k: 10005, 90d: 11009.MathSciNetzbMATHGoogle Scholar
  6. John Brillhart, Peter L. Montgomery, and Robert D. Silverman. Tables of Fibonacci and Lucas factorizations. Math. Comput., 50 (1988): 251–260 and S1–S15.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Richard E. Crandall, J. Doenias, C. Norrie, and Jeff Young. The twenty-second Fermat number is composite. Math. Comput, 64 (1995): 863–868.MathSciNetCrossRefzbMATHGoogle Scholar
  8. William John Ellison, and M. Mendes-France. Les Nombres Premiers. Hermann, Paris, 1975; translated William and Fern Ellison, Prime Numbers, Wiley, New York, 1985.zbMATHGoogle Scholar
  9. Martin Gardner. The Sixth Book of Mathematical Games. W.H. Freeman, San Francisco, 1963; Chapter 9, Patterns and Primes.Google Scholar
  10. Martin Gardner. The remarkable lore of prime numbers. Scientific Amer., 210 no. 3 (Mar. 1964): 120–128.CrossRefGoogle Scholar
  11. Richard K. Guy. Conway’s prime producing machine. Math. Mag. 56 (1983): 26–33.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Richard K. Guy. Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, New York, 1994; Chapter A, Prime Numbers.CrossRefzbMATHGoogle Scholar
  13. A.M. Legendre. Essai sur la Théorie des Nombres, Duprat, Paris, 1808.Google Scholar
  14. R. Sherman Lehman. On the difference π(x) — li(x). Acta Arith. 11 (1966): 397–410; MR 34 #2546.MathSciNetGoogle Scholar
  15. J.E. Littlewood. Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris, 158(1914): 1869–1872.zbMATHGoogle Scholar
  16. Paulo Ribenboim. The Book of Prime Number Records. Springer-Verlag, New York, 1988.CrossRefzbMATHGoogle Scholar
  17. Paulo Ribenboim. The Little Book of Big Primes. Springer-Verlag, New York, 1991.CrossRefzbMATHGoogle Scholar
  18. G.F.B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 1859, 671.Google Scholar
  19. Hans Riesel. Prime Numbers and Computer Methods for Factorization. Birkhaüser, Boston, 1985.CrossRefzbMATHGoogle Scholar
  20. Michael Rubinstein and Peter Sarnak. Chebyshev’s bias, Experimental Math., 3(1994) 173–197.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Jeff Young and Duncan Buell. The twentieth Fermat number is composite.Math. Comput. 50 (1988): 261–263.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • John H. Conway
  • Richard K. Guy

There are no affiliations available

Personalised recommendations