Skip to main content

Famous Families of Numbers

  • Chapter
The Book of Numbers
  • 1737 Accesses

Abstract

Many families of numbers arise again and again in many different mathematical problems: Often they have been named after the mathematicians who investigated them. In this chapter we’ll meet Bell and Stirling, Ramanujan, Catalan, Bernoulli and Euler, Fibonacci and Lucas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V. I. Arnold. Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J. 63(1991): 537–555.

    Article  MathSciNet  Google Scholar 

  • V. I. Arnold. Snake calculus and combinatorics of Bernoulli, Euler and Springer numbers for Coxeter groups. Russian Math. Surveys 47(1992): 3–45.

    MathSciNet  Google Scholar 

  • M. D. Atkinson. How to compute the series expansions of sec x and tan x. Amer. Math. Monthly 93(1986): 387–389.

    Article  MathSciNet  Google Scholar 

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathematical Plays, Academic Press, 1982, 475–478, 501.

    MATH  Google Scholar 

  • N. G. de Bruijn & B. J. M. Morselt. A note on plane trees. J. Combin. Theory 2(1967): 27–34.

    Article  MathSciNet  Google Scholar 

  • B. L. Burrows & R. F. Talbot. Sums of powers of integers. Amer. Math. Monthly 91(1984): 394–403.

    Article  MathSciNet  Google Scholar 

  • J. H. Conway & H. S. M. Coxeter. Triangulated polygons and frieze patterns. Math. Gaz. 57(1973): 87–94, 175–183; MR 57 # 1254–5.

    Article  MathSciNet  Google Scholar 

  • A. W. F. Edwards. A quick route to sums of powers. Amer. Math. Monthly 93(1986): 451–455.

    Article  MathSciNet  Google Scholar 

  • Antal E. Fekete. Apropos two notes on notation. Amer. Math. Monthly 101(1994): 771–778.

    Article  MathSciNet  Google Scholar 

  • Martin Gardner. Time Travel and other Mathematical Bewilderments, W. H. Freeman, New York, 1988, chapter 20, Catalan Numbers.

    MATH  Google Scholar 

  • Johann Wolfgang von Goethe. Versuch die Métamorphosa der Pflanzen zu erklären, Gotha, 1790.

    Book  Google Scholar 

  • H. W. Gould. Bell & Catalan Numbers: Research Bibliography of Two Special Number Sequences, Sixth Edition, Morgantown, WV, 1985.

    Google Scholar 

  • Ronald L. Graham, Donald E. Knuth & Oren Patashnik. Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1989.

    Book  Google Scholar 

  • J. Karamata, Théorèmes sur la sommabilité exponentielle et d’autres sommabilités s’y rattachant. Mathematica (cluj), 9(1935): 164–178.

    MATH  Google Scholar 

  • A. A. Kirillow. Variations on the triangular theme in S. G. Gindikin & E. B. Vinberg (editors). E. B. Dynkin Seminar on Lie Groups. Amer. Math. Soc., 1995.

    Google Scholar 

  • Donald E. Knuth. Two notes on notation. Amer. Math. Monthly 99(1992): 403–422.

    Article  MathSciNet  Google Scholar 

  • D. E. Knuth & T. J. Buckholtz. Computation of tangent, Euler and Bernoulli numbers. Math. Comput. 21(1967): 663–688.

    Article  MathSciNet  Google Scholar 

  • Mark Krusemeyer. A parenthetical note (to a paper of Richard Guy). Math. Mag. 69(1996).

    MATH  Google Scholar 

  • Michael J. Kuchinski. Catalan Structures and Correspondences. M.Sc Thesis, West Virginia University, 1977.

    Google Scholar 

  • Luo Jian-Jin. An Tu Ming, the first discoverer of the Catalan numbers. Neimenggu Daxue Xuebao 19(1988): 239–245; MR 90e:01007.

    MathSciNet  MATH  Google Scholar 

  • J. Millar, N. J. A. Sloane & N. E. Young. A new operation on sequences: The boustrophedon transform, J. Combin. Theory Ser. A 76(1996): 44–54.

    Article  MathSciNet  Google Scholar 

  • Th. Motzkin. Relations between hypersurface cross-ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Amer. Math. Soc. 54(1948): 352–360; MR 9: 489–490.

    Article  MathSciNet  Google Scholar 

  • C. D. Oakley & R. J. Wisner. Flexagons. Amer. Math. Monthly 64(1957): 143–154; MR 19: 241b.

    Article  MathSciNet  Google Scholar 

  • Przemyslaw Prusinkiewicz & Aristid Lindenmayer. The Algorithmic Beauty of Plants, with James S. Hanan, F. David Fracchia, Deborah R. Fowler, Martin J. M. de Boer & Lynn Mercer, Springer-Verlag, 1990.

    Book  Google Scholar 

  • H. Rademacher. On the partition function p(n). Proc. London Math. Soc. (2), 43(1937): 241–254.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim A. Salama & Lawrence L. Kupper. A geometric interpretation for the Eulerian numbers. Amer. Math. Monthly 93(1986): 51–52.

    Article  MathSciNet  Google Scholar 

  • J. O. Shallit, E2972. Another appearance of the Catalan numbers. Amer. Math. Monthly 89(1982): 698; solution David M. Wells, 93(1986): 217–218.

    Article  MathSciNet  Google Scholar 

  • Ian Stewart. Mathematical Recreations: Daisy, Daisy, give me your answer, do. Sci. Amer. 272#1(Jan 1995): 96–99.

    Article  Google Scholar 

  • Peter Guthrie Tate. Proc. Royal Soc. Edinburgh VII(1870–71): 391–394.

    Google Scholar 

  • Helmut Vogel. A better way to construct the sunflower head. Math. Biosciences. 44(1979): 179–189.

    Article  Google Scholar 

  • D’Arcy Wentworth Thompson. On Growth and Form, Cambridge Univ. Press, 1952.

    Google Scholar 

  • C. W. Wardlaw. Organization and Evolution in Plants. Longmans Green, 1965.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Conway, J.H., Guy, R.K. (1996). Famous Families of Numbers. In: The Book of Numbers. Copernicus, New York, NY. https://doi.org/10.1007/978-1-4612-4072-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4072-3_4

  • Publisher Name: Copernicus, New York, NY

  • Print ISBN: 978-1-4612-8488-8

  • Online ISBN: 978-1-4612-4072-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics