Advertisement

What Comes Next?

  • John H. Conway
  • Richard K. Guy
Chapter

Abstract

We hope you like the kind of problem where someone gives you an intriguing number sequence and asks you what comes next. In this chapter we’ll give you several ways to find out. Most of these involve building some kind of pattern from your numbers. Pascal’s triangle is one very well-known pattern.

Keywords

Spectrum Series Fibonacci Number Factorial Number Binomial Expansion Difference Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Conway, and H. S. M. Coxeter. Triangulated polygons and frieze patterns. Math. Gaz., 57(1973): 87–94, 175–183; MR 57, no. 1254–5.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Martin Gardner. Mathematical Magic Show. Math. Assoc. Amer., 1990; Chapter 4, Factorials.zbMATHGoogle Scholar
  3. Martin Gardner. Mathematical Circus. Math. Assoc. Amer., Spectrum Series, 1992; Chapter 13, Fibonacci and Lucas Numbers; Chapters 15, Pascal Triangle.Google Scholar
  4. Calvin T. Long. On the Moessner theorem on integral powers. Amer. Math. Monthly, 73(1966): 846–851 (and papers of O. Perron, I. Paasche, and H. Salié quoted there).MathSciNetCrossRefzbMATHGoogle Scholar
  5. Calvin T. Long. Strike it out—add it up. Math. Gaz., 66(1982): 273–277.CrossRefGoogle Scholar
  6. Yoshio Mikami. The Development of Mathematics in China and Japan, 1913.zbMATHGoogle Scholar
  7. Alfred Moessner. Eine Bemerkung über die Potenzen der natürlichen Zahlen. S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 1951, 29(1952); MR 14, 353b.MathSciNetGoogle Scholar
  8. Ivan Paasche. Ein neuer Beweis des Moessnerschen Satzes. S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 1952(1953): 1–5; MR 14, 8469.MathSciNetzbMATHGoogle Scholar
  9. Ivan Paasche. Ein zahlentheoretische-logarithmischer “Rechenstab.” Math. Naturwiss. Unterr., 6(1953/54): 26–28.MathSciNetzbMATHGoogle Scholar
  10. Ivan Paasche. Beweis des Moessnerschen Satzes mittels linearer Transformationen. Arch. Math., 6(1955): 194–199; MR 17, 237d.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ivan Paasche. Eine Verallgemeinerung des Moessnerschen Satzes, Composite Math., 12(1956): 263–270.MathSciNetzbMATHGoogle Scholar
  12. Joe Roberts. Lure of the Integers. Math. Assoc. of America, Spectrum Series, 1992.Google Scholar
  13. N. J. A. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences. Academic Press, New York, 1995.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • John H. Conway
  • Richard K. Guy

There are no affiliations available

Personalised recommendations