Determination of the DNA Helical Repeat and of the Structure of Supercoiled DNA by Cryo-Electron Microscopy

  • Andrzej Stasiak
  • Jan Bednar
  • Patrick Furrer
  • Vsevolod Katritch
  • Jacques Dubochet
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 82)


Cryo-electron microscopy provides an unique possibility to directly observe shape of individual DNA molecules freely suspended in cryo-vitrifled liquid media. We used this technique to characterize the superhelical trajectory adopted by linear DNA molecules composed of directly repeated intrinsically bent DNA segments which have 10 or 11 base pair each. Although the DNA helix is not directly discerned by this method, the measured values of diameter, pitch and handedness of the formed superhelices allow to determine the chirality and the number of base-pairs per turn of the constituting DNA. We also used cryo-electron microscopy to study the response of supercoiled DNA molecules to increasing counterions’ concentration. We observed that upon substantial neutralization of the negative charge of the DNA, the supercoiled molecules have a tendency to adopt a so called “tight” configuration, whereby the opposing segments of interwound molecules directly approach each other. Metropolis Monte Carlo simulations of shapes of supercoiled DNA molecules revealed that some short range attractive interactions between DNA segments would be needed to compensate for the entropy loss during transition from a loose toward a “tight” configuration of supercoiled DNA molecules. Since earlier studies of DNA helical repeat and DNA supercoiling are not familiar to non-biologists we included in to this chapter a short chronological overview of these studies.


Effective Diameter Random Thermal Motion Helical Repeat Metropolis Monte Carlo Simulation Short Range Attractive Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Vinograd, J., Lebowitz, J., RadlofF, R., Watson, R. & Laipis, P. The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53, 1104–1111 (1965).CrossRefGoogle Scholar
  2. [2]
    Griffith, J., Bleyman, M., Rauch, CA., Kitchin, P.A. & Englund, P.T. Visualisation of the bent helix in kinetoplast DNA by electron microscopy. Cell 46, 717–724 (1986).CrossRefGoogle Scholar
  3. [3]
    Krasnow, M.A., Stasiak, A., Spengler, S.J., Dean, F., Koller, T. & Cozzarelli, N.R Determination of the absolute handedness of knots and catenanes of DNA. Nature 304, 559–560 (1983).CrossRefGoogle Scholar
  4. [4]
    VoUenweider, H.J., James, A. & Szybalski, W. Discrete length classes of DNA depend on mode of dehydration. Proc. Natl. Acad. Sci. USA 75, 710–714 (1978).CrossRefGoogle Scholar
  5. [5]
    Dubochet, J., Adrian, M., Dustin, I., Furrer, P. & Stasiak, A. in Methods in Enzymology (eds. Lilley, D.M.J. & Dahlberg, J.E.) 507–518 (Academic Press, Inc., New York, 1992).Google Scholar
  6. [6]
    Dustin, I., Furrer, P., Stasiak, A., Dubochet, J., Langowski, J. & Egelman, E. Spatial visualisation of DNA in solution. J. Struct. Biol. 107, 15–21 (1991).CrossRefGoogle Scholar
  7. [7]
    Dubochet, J., Bednar, J., Furrer, P., Stasiak, A.Z., Stasiak, A. & Bolshoy, A.A. Determination of the DNA helical repeat by cryo-electron microscopy. Nature Structural Biology 1, 361–363 (1994).CrossRefGoogle Scholar
  8. [8]
    Bednar, J., Furrer, P., Stasiak, A., Dubochet, J., Egelman, E.H. & Bates, A. D. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound super-helix. Possible implications for DNA structure in vivo. J. Moi Biol. 235, 825–847 (1994).CrossRefGoogle Scholar
  9. [9]
    Dubochet, J., Bednar, J., Furrer, P. & Stasiak, A. in Structural Biology: The State of the Art (eds. Sarma, R.H. & Sarma, M.H.) 149–156 (Adenine Press, Albany, NY, 1994).Google Scholar
  10. [10]
    Watson, J.D. & Crick, F.H.C. Molecular structure of nucleic acid. A structure for deoxyribonucleic acid. Nature 171, 373–738 (1953).Google Scholar
  11. [11]
    Cairns, J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Moi Biol. 6, 208–213 (1963).CrossRefGoogle Scholar
  12. [12]
    Rodley, G.A., Scobie, R.S., Bates, R.H.T. & Levitt, R.M. A possible conformation for double-stranded polynucleotides. Proc. Natl. Acad. Sci. USA 73, 2959–2963 (1976).CrossRefGoogle Scholar
  13. [13]
    Arnott, S., Wilkins, M.H.F., Hamilton, L.D. & Langridge, R. Fourier synthesis studies of lithium DNA, Part III: Hoogsteen models. J. Moi Biol. 11, 391–402 (1965).CrossRefGoogle Scholar
  14. [14]
    Wang, A.H.-J., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. & Rich, A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686 (1979).CrossRefGoogle Scholar
  15. [15]
    Rhodes, D. & Klug, A. Helical periodicity of DNA determined by enzyme digestion. Nature 286, 573–578 (1980).CrossRefGoogle Scholar
  16. [16]
    Rhodes, D. & Klug, A. Sequence-dependent helical periodicity of DNA. Nature 292, 378–380 (1981).CrossRefGoogle Scholar
  17. [17]
    Wang, J.C. Helical repeat of DNA in solution. Proc. Natl. Acad. Sci. USA 76, 200–203 (1979).CrossRefGoogle Scholar
  18. [18]
    Depew, R.E. & Wang, J.C. Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. USA 72,4275–4279(1975).CrossRefGoogle Scholar
  19. [19]
    Pulleyblank, D.E., Shure, M., Tang, D., Vinograd, J. & Vosberg, H.- P. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc. Natl. Acad. Sci. USA 72, 4280–4284 (1975).CrossRefGoogle Scholar
  20. [20]
    Bhattacharyya, A., Murchie, A.I.H. & Lilley, D.M.J. RNA bulges and the helical periodicity of double-stranded RNA. Nature 343, 484–487(1989).CrossRefGoogle Scholar
  21. [21]
    Drak, J. & Crothers, D.M. Helical repeat and chirality effects on DNA gel electrophoretic mobility. Proc. Natl. Acad. Sci. USA 88, 3074–3078(1991).CrossRefGoogle Scholar
  22. [22]
    Beebe, T.P., Wilson, T. E., Ogletree, D. F., Katz, J. E., Baldhorn, R., Salmeron, M. B. & Siekhaus, W. J. Direct observation of native DNA structures with scanning tunneling microscope. Science 243, 370–372 (1989).CrossRefGoogle Scholar
  23. [23]
    Lee, G., Arscott, P.G., Bloomfield, V.A. & Evans, D.F. Scanning tunneling microscopy of nucleic acids. Science 244, 475–477 (1989).CrossRefGoogle Scholar
  24. [24]
    Arscott, P.G., Lee, G., Bloomfield, V.A. & Evans, D.F. Scanning tunneling microscopy of Z-DNA. Nature 339, 484–486 (1989).CrossRefGoogle Scholar
  25. [25]
    Arscott, P.G., Lee, G., Bloomfield, V.A. & Evans, D.F. Helical period of Z-DNA. Nature 346, 706 (1990).CrossRefGoogle Scholar
  26. [26]
    Clemmer, C.R. & Beebe, T.P. Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991).CrossRefGoogle Scholar
  27. [27]
    Arscott, P.G. & Bloomfield, V.A. Scanning tunneling microscopy of nucleic acids. Methods Enzymol. 211, 490–506 (1992).CrossRefGoogle Scholar
  28. [28]
    Wu, H.-M. & Crothers, D.M. The locus of sequence directed and protein-induced DNA bending. Nature 308, 509–513 (1984).CrossRefGoogle Scholar
  29. [29]
    Ulanovsky, L., Bodner, M., Trifonov, E.N. & Choder, M. Curved DNA: design, synthesis and circularisation. Proc. Natl. Acad. Sci. USA 83, 862–866(1986).CrossRefGoogle Scholar
  30. [30]
    Ulanovsky, L.E. & Trifonov, E.N. Estimation of wedge components in curved DNA. Nature 326, 720–722 (1987).CrossRefGoogle Scholar
  31. [31]
    Calladine, C.R., Collis, C.M., Drew, H.R. & Mott, M.R. A study of electrophoretic mobility of DNA in agarose and Polyacrylamide gels. J. Mol. Biol. 221, 981–1005 (1991).CrossRefGoogle Scholar
  32. [32]
    Furrer, P., Bednar, J., Adrian, M., Stasiak, A., Dubochet, J., Rvet, B., Brahms, S. & Brahms, G.J. in Structure and Function: Proceedings of Seventh Conversation in Biomolecular Stereodynamics (eds. Sarma, R.H. & Sarma, M.H.) 229–236 (Adenine Press, Inc., Albany, NY, 1992).Google Scholar
  33. [33]
    Olson, W.K., Marky, N.L., Jernigan, R.L. & Zhurkin, V.B. Influence of fluctuations on DNA curvature; a comparison of flexible and static wedge models of intrinsically bent DNA. J. Mol. Biol. 232, 530–554 (1993).CrossRefGoogle Scholar
  34. [34]
    Dubochet, J. & Noll, M. Nucleosome arcs and helices. Science 202, 280–286 (1978).CrossRefGoogle Scholar
  35. [35]
    Ulyanov, N.B. & James, T.L. Statistical Analysis of DNA duplex structures in solution derived by high resolution NMR. Applied Magnetic Resonance 7, 21–42 (1994).CrossRefGoogle Scholar
  36. [36]
    Peck, L.J. & Wang, J.C. Sequence dependence of the helical repeat of DNA in solution. Nature 292, 375–378 (1981).CrossRefGoogle Scholar
  37. [37]
    DiCapua, E., Engel, A., Stasiak, A. & Koller, T. Characterization of complexes between RecA protein and duplex DNA by electron microscopy. J. Mol. Biol. 157, 87–103 (1982).CrossRefGoogle Scholar
  38. [38]
    Stasiak, A. & DiCapua, E. The helicity of DNA in complexes with RecA protein. Nature 299, 185–186 (1982).CrossRefGoogle Scholar
  39. [39]
    Crawford, L.V. The physical characteristics of Polyoma virus. Virology 19, 279–282 (1963).CrossRefGoogle Scholar
  40. [40]
    Lebowitz, J. Through the looking glass: the discovery of supercoiled DNA. Trends in Biochemical Sciences 15, 202–207 (1990).CrossRefGoogle Scholar
  41. [41]
    Wang, J.C. DNA topoisomerases: why so many? J. Biol. Chem. 266, 6659–6662 (1991).Google Scholar
  42. [42]
    Vologodskii, A.V. & Cozzarelli, N.R. Supercoiling, knotting, looping and other large-scale conformational properties of DNA. Current Opinion in Structural Biology 4, 372–375 (1994).CrossRefGoogle Scholar
  43. [43]
    Bauer, W. & Vinograd, J. The interaction of closed-circular DNA with intercala-tive dyes I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–171 (1968).CrossRefGoogle Scholar
  44. [44]
    Bauer, W.R., Crick, F.H.C. & White, J.H. Supercoiled DNA. Sci. Am. 243 (July), 100–113 (1980).Google Scholar
  45. [45]
    Campbell, A.M. Conformational variation in superhelical deoxyribonucleic acid. Biochem. J. 171, 281–283 (1978).Google Scholar
  46. [46]
    Brady, G.W., Satkowski, M., Foos, D. & Benham, C.J. Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution. J. Mol. Biol. 195, 185–191 (1987).CrossRefGoogle Scholar
  47. [47]
    Adrian, M., ten Heggeler-Bordier, B., Wahli, W., Stasiak, A. Z., Stasiak, A. & Dubochet, J. Direct visualisation of supercoiled DNA molecules in solution. EMBO J. 9, 4551–4554 (1990).Google Scholar
  48. [48]
    Wilson, R.W. & Bloomfield, V.A. Counterion-induced condensation of deoxyribonucleic acid. A light scattering study. Biochemistry 18, 2192–2196 (1979).CrossRefGoogle Scholar
  49. [49]
    Marquet, R. & Houssier, C. Thermodynamics of cation-induced DNA condensation. J. Biomol. Struct. Dyn. 9, 159–167 (1991).Google Scholar
  50. [50]
    Shaw, S.Y. & Wang, J. Knotted DNA rings: probability of formation and resolution of the two chiral trefoils. Science 260, 533–536 (1993).CrossRefGoogle Scholar
  51. [51]
    Rybenkov, V.V., Cozzarelli, N.R. & Vologodskii, A.V. The probability of DNA knotting and the effective diameter of the DNA double helix. Proc. Natl. Acad. Sci. USA 90, 5307–5311 (1993).CrossRefGoogle Scholar
  52. [52]
    Vologodskii, A.V., Levene, S.D., Kienin, K.V., Frank-Kamenetskii, M. & Coz-zarelli, N.R. Conformational and thermodynamic properties of supercoiled DNA. J. Mol Biol. 227, 1224–1243(1992).CrossRefGoogle Scholar
  53. [53]
    Schlick, T. & Olson, W.K. Supercoiled DNA energetics and dynamics by computer simulation. J. Mol Biol. 223, 1089–1119 (1992).CrossRefGoogle Scholar
  54. [54]
    Marko, J.F. & Siggia, E.D. Fluctuations and Supercoiling of DNA. Science 265, 506–508 (1994).CrossRefGoogle Scholar
  55. [55]
    Drew, H.R., Weeks, J.R. & Travers, A.A. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EM BO J. 4, 1025–1032 (1985).Google Scholar
  56. [56]
    Frank-Kamenetskii, M.D. in DNA topology and its biological effects, (eds. Cozzarelli, N.R. & Wang, J.C.) 185–215 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990).Google Scholar
  57. [57]
    Bates, A.D. & Maxwell, A. DNA Topology, 1–120 (IRL Press, Oxford, 1993).Google Scholar
  58. [58]
    Stark, W.M., Boocock, M.R. & Sherratt, D.J. Site-specific recombination by Tn3 resolvase. Trends Genet. 5, 304–309 (1989).CrossRefGoogle Scholar
  59. [59]
    Bednar, J., Furrer, P., Stasiak, A. & Dubochet, J. in Electron microscopy 92 (eds. Megias-Megias, L., Rodrigez-Garcia, M.I., Rios, A. & Arias, J.M.) 11–12 (University of Granada, Granada, 1992).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Andrzej Stasiak
    • 1
  • Jan Bednar
    • 1
  • Patrick Furrer
    • 1
  • Vsevolod Katritch
    • 1
  • Jacques Dubochet
    • 1
  1. 1.Laboratoire d’Analyse Ultrastructurale, Bâtiment de BiologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations