Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 82))

Abstract

The processes of transcription and replication are catalysed by processive enzyme complexes which move translationally along the DNA helix, unwinding the DNA helix ahead of the complex and reforming a duplex helix behind the complex (Gamper and Hearst 1982; Cook et al. 1994). These processes are known to torsionally stress DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, A., eds. Handbook of mathematical functions, 9th Printing, Dover, New York (1970). See Chapter 16 and 17.

    Google Scholar 

  2. Antman, S.S. The theory of rods, Handbuch der Physik, Vol. VIa/2, Springer, Berlin (1972).

    Google Scholar 

  3. Benham, C.J. Elastic model of supercoiling, Proc. Nat. Acad. Sci. USA 74: 2397–2401 (1977).

    Article  CAS  Google Scholar 

  4. Benham, C.J. An elastic model of the large-scale structure of duplex DNA, Biopolymers 18: 609–623 (1979).

    Article  CAS  Google Scholar 

  5. Benham, C.J. Geometry and mechanics of DNA superhelicity, Biopolymers 22: 2477–2495 (1983).

    Article  CAS  Google Scholar 

  6. Benham, C.J. The role of the stress resultant in determining mechanical equilibria ofsuperhelical DNA, Biopolymers 26: 9–15 (1987).

    Article  CAS  Google Scholar 

  7. Brill, S.J. and Sternglanz, R. Transcription-dependent DNA supercoiUng in yeast DNA topoisomerasemutants, Cell 54: 403–411 (1988).

    Article  CAS  Google Scholar 

  8. Clebsch, A. Theorie der elasticität Fester Körper, B. G. Teubner, Leipzig (1862).

    Google Scholar 

  9. Clebsch, A. Théorie de l’elasticité des corps solides, Translation of Clebsch (1862) by Saint-Venant & Flamant, Dunod, Paris (1883).

    Google Scholar 

  10. Cohen, H. A nonlinear theory of elastic directed curves, Int. J. Engng Sci. 4: 511–524 (1966).

    Article  Google Scholar 

  11. Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z. and Tobias, I. On the dynamics of rods in the theory of Kirchhoff and Clebsch, Arch. Rational Mech. Anal. 121: 339–359 (1993).

    Article  Google Scholar 

  12. Cook, D.N., Ma, D. and Hearst, J.E. Supercoiling induced by transcription, Nucleic Acids and Molecular Biology 8: 133–146 (1994).

    CAS  Google Scholar 

  13. Cook, D.N., Ma, D., Pon, N.G. and Hearst, J.E. Dynamics of DNA supercoiUng by transcription in E. coli, Proc. Natl. Acad. Sci., USA 89: 10603–10607 (1992).

    Article  CAS  Google Scholar 

  14. Ericksen, J.L. and Truesdell, C. Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal. 1: 293–323 (1958).

    Google Scholar 

  15. Gamper, H.B. and Hearst, J.E. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation, and ternary complexes, Cell 29: 81–90 (1982).

    Article  CAS  Google Scholar 

  16. Giaever, G.N. and Wang, J.C. Supercoiling of intracellular DNA can occur in eukaryotic cells, Cell 55: 849–856 (1988).

    Article  CAS  Google Scholar 

  17. Harris, R.A. and Hearst, J.E. On polymer dynamics, Journal of Chemical Physics 44: 2595–2602 (1966).

    Article  CAS  Google Scholar 

  18. Hearst, J.E. and Hunt, N.G. Statistical mechanical theory for the plectonemic DNA supercoil, J. Chem. Phys. 95: 9322–9327 (1991).

    Article  CAS  Google Scholar 

  19. Hearst, J.E. and Stockmayer, W.E. Sedimentation constants of broken chains and wormlike coils, Journal of Chemical Physics 37: 1425–1433 (1962).

    Article  CAS  Google Scholar 

  20. Hunt, N.G. and Hearst, J.E. Elastic model of DNA supercoiUng in the infinite-length limit, J. Chem. Phys. 95: 9329–9336 (1991).

    Article  CAS  Google Scholar 

  21. Kim, R.A. and Wang, J.C. A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings, Cell 57: 975–985 (1989).

    Article  CAS  Google Scholar 

  22. Kirchhoff, G. Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. f. reine, angew. Math. (Crelle) 56: 285–313 (1859).

    Article  Google Scholar 

  23. Kirchhoff, G. Vorlesungen über mathematische physik, mechanik, Vol. 28, B. G. Teubner, Leipzig (1876).

    Google Scholar 

  24. Lagrange, J.L. Mecanique analytique, Paris, Chez la Veuve Desaint (1788).

    Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M. Theory of Elasticity, 3rd ed., Pergamon, New York, Sec. 19 (1959).

    Google Scholar 

  26. Langer, J. and Singer, D.A. Knotted Elastic Curves in R 3, J. London Math. Soc. 30: 512–520 (1984).

    Article  Google Scholar 

  27. Le Bret, M. Catastrophic variation of twist and writhing of circular DNAs with constraint?, Biopolymers 18: 1709–1725 (1979).

    Article  Google Scholar 

  28. Le Bret, M. Twist and writhing in short circular DNAs According to first-order elasticity, Biopolymers 23: 1835–1867 (1984).

    Article  Google Scholar 

  29. Lilley, D.M.J, and Higgins, C.F. Local DNA topology and gene expression: the case of the leu-500 promoter, Mol. Microbiol. 5: 779–783 (1991).

    Article  CAS  Google Scholar 

  30. Liu, L.F. and Wang, J.C. SupercoiUng of the DNA template during transcription, Proc. Natl. Acad. Sci., USA 84: 7024–7027 (1987).

    Article  CAS  Google Scholar 

  31. Lockshon, D. and Morris, D.R. Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors, Nucleic Acids Res. 11: 2999–3017(1983).

    Article  CAS  Google Scholar 

  32. Love, A.E.H. A treatise on the mathematical theory of elasticity, 4th ed. Dover, New York, Sec. 260 (1927).

    Google Scholar 

  33. MacMillan, W.D. Dynamics of rigid bodies, McGraw-Hill, New York, Secs. 102–112 (1936).

    Google Scholar 

  34. Maddocks, J.H., Stability of nonlinearly elastic rods, Arch. Ration. Mech. Anal. 85: 311–354 (1984).

    Article  Google Scholar 

  35. Ostrander, E.A., Benedetti, P. and Wang, J.C. Template supercoiUng by a chimera of yeast GAL4 protein and phage T7RNA polymerase, Science 249: 1261–1265 (1990).

    Article  CAS  Google Scholar 

  36. Pruss, G.J. and Drlica, K. Topoisomerase I mutants: the gene of pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling, Proc. Natl. Acad. Sci. USA 83: 8952–8956 (1986).

    Article  CAS  Google Scholar 

  37. Pruss, G.J. and Drlica, K. DNA supercoiling and prokaryotic transcription, Cell 56: 521–523 (1989).

    Article  CAS  Google Scholar 

  38. Rahmouni, A.R. and Wells, R.D. Stabilization of Z DNA in vivo by localized supercoiling, Science 246: 358–363 (1989).

    Article  CAS  Google Scholar 

  39. Reissner, R. On a one-dimensional, large-displacement, finite-strain beam-theory, Stud. Appl. Math. 52: 87–95 (1973).

    Google Scholar 

  40. Schlick, T. and Olson, W.K. Supercoiled DNA energetics and dynamics by computer simulation, J. Mol. Biol. 223: 1089–1119 (1992).

    Article  CAS  Google Scholar 

  41. Shi, Y. and Hearst, J.E. The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling, J. Chem. Phys. 101(6): 5186–5200 (1994).

    Article  CAS  Google Scholar 

  42. Shi, Y., Borovik, A.E. and Hearst, J.E. Elastic rod model incorporating shear and extension, generalized nonlinear Schrödinger equations, and novel closed-form solutions for supercoiled DNA, J. Chem. Phys. 103: 3166–3183(1995).

    Article  CAS  Google Scholar 

  43. Simo, J.C, Marsden, J.E. and Krishnaprasad, P.S. The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates, Arch. Ration. Mech. Anal. 104: 125–183 (1988).

    Article  Google Scholar 

  44. Sinden, R.R. and Ussery, D.W. Analysis of DNA structure in vivo using psoralen photobinding: measurement of supercoiling, topological domains, and DNA-protein interactions, Methods in Enzymology 212: 319–335 (1992).

    Article  CAS  Google Scholar 

  45. Tanaka, F. and Takahashi, H. Elastic theory of supercoiled DNA, J. Chem. Phys. 83: 6017–6026(1985).

    Article  CAS  Google Scholar 

  46. Truesdell, C.A. The rational mechanics of elastic or flexible bodies, 1638–1788. L. Euleri Opera Omnia, Series II, Volume 11, Part 2, Füssli, Zürich (1960).

    Google Scholar 

  47. Truesdell, C.A. Origin of the theory of vibrating systems, Res Mechanica 21: 291–311 (1987).

    Google Scholar 

  48. Tsao, Y-P., Wu, H-Y., and Liu, L.F. Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies, Cell 56: 111–118 (1989).

    Article  CAS  Google Scholar 

  49. Tsuru, H. and Wadati, M. Elastic model of highly supercoiled DNA, Biopolymers 25: 2083–2096(1986).

    Article  CAS  Google Scholar 

  50. Vologodskii, A.V. and Cozzarelli, N.R. Monte Carlo analysis of the conformation of DNA catenanes, J. Mol. Biol. 232: 1130–1140 (1993).

    Article  CAS  Google Scholar 

  51. Wadati, M. and Tsuru, H. Elastic model of looped DNA, Physica D 21: 213–226 (1986).

    Article  Google Scholar 

  52. Whittaker, E.T. A treatise on the analytical dynamics of particles and rigid bodies, 4th ed., Cambridge, London (1965).

    Google Scholar 

  53. Wu, H-Y., Shyy, S., Wang, J.C. and Liu, L.F. Transcription generates positively and negatively supercoiled domains in the template, Cell 53: 433–440 (1988).

    Article  CAS  Google Scholar 

  54. Yang, Y., Tobias, I. and Olson, W.K. Finite element analysis of DNA supercoiling, J. Chem. Phys. 98: 1673–1686 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hearst, J.E., Shi, Y. (1996). The Elastic Rod Provides a Model for DNA and Its Functions. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4066-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4066-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94838-6

  • Online ISBN: 978-1-4612-4066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics