Skip to main content

Abstract

This paper is concerned with some simple lattice models of the entanglement complexity of polymers in dilute solution, with special reference to biopolymers such as DNA. We review a number of rigorous results about the asymptotic behaviour of the knot probabihty, the entanglement complexity and the writhe of a lattice polygon (as a model of a ring polymer) and discuss Monte Carlo results for intermediate length polygons. In addition we discuss how this model can be augmented to include the effect of solvent quality and ionic strength. We also describe a lattice ribbon model which is able to capture the main properties of an oriented ribbon-like molecule (such as duplex DNA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne and M.D. Frank-Kamenetskii, Effect of excluded volume on topological properties of circular DNA, J. Biomol. Str. Dyn. 5 (1988), 1173–1185.

    CAS  Google Scholar 

  2. A.V. Vologodskii, S.D. Levene, K.V. Klenin, M. Frank-Kamenetskii and N.R. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA, J. Mol. Biol. 227 (1992), 1224–1243.

    Article  CAS  Google Scholar 

  3. S.Y. Shaw and J.C. Wang, Knotting of a DNA chain during ring closure, Science 260 (1993), 533–536.

    Article  CAS  Google Scholar 

  4. V.L. Rybenkov, N.R. Cozzarelli and A. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Nat. Acad. Sci. USA 90 (1993), 5307–5311.

    Article  CAS  Google Scholar 

  5. S.Y. Shaw and J.C. Wang, DNA knot formation in aqueous solutions, J. Knot Theory and Its Ramifications 3 (1994), 287–298.

    Article  Google Scholar 

  6. M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini, D.W. Sumners and S.G. Whittington, Knotting and swpercoiling in circular DNA: A model incorporating the effect of added salt, Phys. Rev. E 49 (1994), 868–872.

    Article  CAS  Google Scholar 

  7. F.B. Dean, A. Stasiak, T. Koller and N.R. Cozzarelli, Duplex DNA knots produced by Escherichia coli topoisomerase I, J. Biol. Chem. 260 (1985), 4795–4983.

    Google Scholar 

  8. C.D. Lima, J.C. Wang and A. Mondragon, Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I, Nature 367 (1994), 138–146.

    Article  CAS  Google Scholar 

  9. S.A. Wasserman and N.R. Cozzarelli, Supercoiled DNA-directed knotting by T4 topoisomerase, J. Biol. Chem. 266 (1991), 20567–20573.

    CAS  Google Scholar 

  10. J. Roca and J.C. Wang, DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism, Cell 77 (1994), 609–616.

    Article  CAS  Google Scholar 

  11. S.A. Wasserman, J.M. Dungan and N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229 (1985), 171–174.

    Article  CAS  Google Scholar 

  12. S.A. Wasserman and N.R. Cozzarelli, Biochemical topology: applications to DNA recombination and replication, Science 232 (1986), 951–960.

    Article  CAS  Google Scholar 

  13. T. Goto and J.C. Wang, An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings, J. Biol. Chem. 257 (1982), 5866–5872.

    CAS  Google Scholar 

  14. K. Shishido, N. Komiyamaand, S. Ikawa, Increased production of a form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants, J. Mol. Biol. 195 (1987), 215–218.

    Article  CAS  Google Scholar 

  15. K. Shishido, S. Ishii and N. Komiyama, The presence of the region on pBR322 that encodes resistance to tetracycline is responsible for high levels of plasmid DNA knotting in Escherichia coli DNA topoisomerase I deletion mutants, Nucleic Acids Rsh. 17 (1989), 9749–9759.

    Article  CAS  Google Scholar 

  16. P.T. Englund, S.L. Hajduk and J.C Marini, The molecular biology of trypanosomes, Ann. Rev. Biochem. 51 (1982), 695–726.

    Article  CAS  Google Scholar 

  17. D.W. Sumners, Knot theory and DNA, in New Scientific Applications of Geometry and Topology, Proceedings of Symposia in Applied Mathematics 45, D.W. Sumners, ed., AMS, Providence, RI, 1992, pp. 39–72.

    Google Scholar 

  18. H.L. Frisch and E. Wasserman, Chemical Topology, J. Am. Chem. Soc. 83 (1968), 3789–3795.

    Article  Google Scholar 

  19. M. Delbruck, Mathematical Problems in the Biological Sciences, AMS, Providence, RI, 1962 p. 55.

    Google Scholar 

  20. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii and V.V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Sov. Phys.-JETP 39 (1974), 1059–1063.

    Google Scholar 

  21. J.P.J. Michels and F.W. Wiegel, On the topology of a polymer ring, Proc. Roy. Soc. A 403 (1986), 269–284.

    Article  CAS  Google Scholar 

  22. D.W. Sumners and S.G. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.

    Article  Google Scholar 

  23. N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.

    Article  Google Scholar 

  24. CE. Soteros, D.W. Sumners and S.G. Whittington, Entanglement complexity of graphs in Z 3, Math. Proc. Camb. Phil. Soc. 111 (1992), 75–91.

    Article  Google Scholar 

  25. W.R. Bauer, F.H.C Crick and J.H. White, Supercoiled DNA, Sci. American 243 (1980), 118.

    CAS  Google Scholar 

  26. J.H. White, Self-linking and the Gauss integral in higher dimensions, Am. J. Math. 91 (1969), 693–728.

    Article  Google Scholar 

  27. N. Madras, A. Orlitsky and L.A. Shepp, Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length, J. Stat. Phys. 58 (1990), 159–183.

    Article  Google Scholar 

  28. E.J. Janse van Rensburg, S.G. Whittington and N. Madras, The pivot algorithm and polygons, J. Phys. A: Math. Gen. 23 (1990), 1589–1612.

    Article  Google Scholar 

  29. E.J. Janse van Rensburg and S.G. Whittington, The knot probability in lattice polygons, J. Phys. A: Math. Gen. 23 (1990), 3573–3590.

    Article  Google Scholar 

  30. E.J. Janse van Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi and S.G. Whittington, The writhe of a self-avoiding polygon, J. Phys. A: Math. Gen. 26 (1993), L981–985.

    Article  Google Scholar 

  31. J.M. Hammersley, Percolation processes II The connective constant, Proc. Camb. Phil. Soc. 53 (1957), 642–645.

    Article  CAS  Google Scholar 

  32. J.M. Hammersley, The number of polygons on a lattice, Proc. Camb. Phil. Soc. 57 (1961), 516–523.

    Article  Google Scholar 

  33. H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4 (1963), 960–969.

    Article  Google Scholar 

  34. R.H. Fox, A quick trip through knot theory in Topology of 3-manifolds and related topics ed. M.K. Fort, Jr., Prentice-Hall, New York, 1962.

    Google Scholar 

  35. Y. Diao, N. Pippenger and D.W. Sumners, On random knots, J. Knot Theory and Its Ramifications 3 (1994), 419–429.

    Article  Google Scholar 

  36. Y. Diao, The knotting of equilateral polygons in R 3, J. Knot Theory and Its Ramifications 2 (1994), 413–425.

    Article  Google Scholar 

  37. R.C. Lacher and D.W. Sumners, Data structures and algorithms for computation of topological invariants of entanglements: link, twist and writhe, in Computer Simulation of Polymers, R.J. Roe, ed., Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 365–373.

    Google Scholar 

  38. G. Burde and H. Zieschang, Knots, de Gruyter, Berlin, 1985.

    Google Scholar 

  39. J.B. Wilker and S.G. Whittington, Extension of a theorem on super-multiplicative functions, J. Phys. A 12 (1979), L245–247.

    Article  Google Scholar 

  40. N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser, Boston, 1993.

    Google Scholar 

  41. J.M. Hammersley and D.J.A. Welsh, Further results on the rate of convergence to the connective constant for a self-avoiding walk, Q. J. Math. Oxford 13 (1962), 108.

    Article  Google Scholar 

  42. E.J. Janse van Rensburg, D.W. Sumners, E. Wasserman and S.G. Whittington, Entanglement complexity of self-avoiding walks, J. Phys. A 25 (1992), 6557–6566.

    Article  Google Scholar 

  43. K. Koniaris and M. Muthukumar, Self-entanglement in ring polymers, J. Chem. Phys. 95 (1991), 2873–2881.

    Article  CAS  Google Scholar 

  44. M.L. Mansfield, Knots in Hamilton Cycles, Macromolecules 27 (1994), 5924–5926.

    Article  CAS  Google Scholar 

  45. T. Deguchi and K. Tsurusaki, Topology of closed random polygons, J. Phys. Soc. Japan 62 (1993), 1411–1414.

    Article  CAS  Google Scholar 

  46. E. Orlandini, E.J. Janse van Rensburg, M.C. Tesi and S.G. Whittington, Random linking of lattice polygons, J. Phys. A: Math. Gen. 27 (1994), 335–345.

    Article  Google Scholar 

  47. Y. Diao, Unsplittability of random links, J. Knot Theory and Its Ramifications 3 (1994), 379–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

van Rensburg, E.J.J., Orlandini, E., Sumners, D.W., Tesi, M.C., Whittington, S.G. (1996). Topology and Geometry of Biopolymers. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4066-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4066-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94838-6

  • Online ISBN: 978-1-4612-4066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics