Integration Methods for Molecular Dynamics

  • Benedict J. Leimkuhler
  • Sebastian Reich
  • Robert D. Skeel
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 82)


Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches.

Key words

leapfrog method Verlet method symplectic method multiple-timestep methods symplectic integrator molecular dynamics simulation constrained dynamics SHAKE multiple time scales long-time integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford Science, New York, 1987.Google Scholar
  2. [2]
    Andersen, H.C., Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys. 52, 24–34, 1983.CrossRefGoogle Scholar
  3. [3]
    Barth, E., A user’s guide to MBLab, 1993 Matlab Conference Proceedings, electronic publication available via anonymous ftp from
  4. [4]
    Barth, E., Kuczera, K., Leimkuhler, B., and Skeel, R.D., Algorithms for constrained molecular dynamics, J. Comput. Chem., 16, 1192–1209, 1995.CrossRefGoogle Scholar
  5. [5]
    Beeman, D., Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20, 130–139, 1976.CrossRefGoogle Scholar
  6. [6]
    Biesiadecki, J.J. and Skeel, R.D., Dangers of multiple-time-step methods, J. Comput. Phys. 109, 318–328, 1993.CrossRefGoogle Scholar
  7. [7]
    Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edition, Academic Press, New York, 1986.Google Scholar
  8. [8]
    Brooks, B.R., Zhou, J., and Reich, S., Elastic molecular dynamics with flexible constraints, in preparation.Google Scholar
  9. [9]
    Buneman, O., Time-Reversible Difference Procedures, J. Comput. Phys. 1, 517–535, 1967.CrossRefGoogle Scholar
  10. [10]
    Calvo, M.P. and Sanz-Serna, J.M., The development of variable step symplectic integrators, with application to the two-body problem, SIAM J. Sci. Comp. 14, 936–952, 1993.CrossRefGoogle Scholar
  11. [11]
    Chawla, M.M., On the order and attainable intervals of periodicity of explicit Nystrom methods for y″ = f(t,y), SIAM J. Numer. Anal. 22, 127–131, 1985.CrossRefGoogle Scholar
  12. [12]
    Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.Google Scholar
  13. [13]
    Dragt, A., Neri, F., Rangarajan, G., Douglas, D., Healy, L., and Ryne, R., “Lie algebraic treatment of nonlinear beam dynamics”, Ann. Rev. Nucl. Part. Sci. 38, 455–496, 1988.CrossRefGoogle Scholar
  14. [14]
    Fixman, M., Classical statistical mechanics and constraints: A theorem and applications to polymers., Proc. Nat. Acad. Sci. 71, 3050–53, 1974.CrossRefGoogle Scholar
  15. [15]
    Grubmüller, H., Heller, H., Windemuth, A., and Schulten, K., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Molecular Simulation 6, 121–142, 1991.CrossRefGoogle Scholar
  16. [16]
    Ge, Z. and Marsden, J., Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A 133, 134–139, 1988.CrossRefGoogle Scholar
  17. [17]
    Hairer, E., Norsett, S., and Wanner, G., Solving Ordinary Differential Equations, I, Springer-Verlag, New York/Berlin, 1987.Google Scholar
  18. [18]
    Hayli, A., Le problème des N corps dans un champ extérieur application a l’évolution dynamique des amas ouverts-I, Bulletin Astronomique 2, 67–89, 1967.Google Scholar
  19. [19]
    Janezic, D. and Orel, B., Implicit Runge-Kutta methods for molecular dynamics integration, J. Chem. Inf. Comput. Sci. 33, 252–257, 1993.Google Scholar
  20. [20]
    Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, PhD Thesis, Department of Mathematics, University of Geneva, 1993.Google Scholar
  21. [21]
    Lambert, J. and Watson, D., Symmetricmultistep methods, J. Inst. Maths. Applic. 18, 189–202, 1976.CrossRefGoogle Scholar
  22. [22]
    Leimkuhler, B. and Skeel, R.D., Symplectic Numerical Integrators in Constrained Hamiltonian Systems, J. Comput. Phys. 112, 117–125, 1994.CrossRefGoogle Scholar
  23. [23]
    Marsden, J.R. and Ratiu, T., An Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994.Google Scholar
  24. [24]
    McCammon, J.A. and Harvey, S.C., Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1987.Google Scholar
  25. [25]
    Okunbor, D. and Skeel, R.D., Canonical numerical methods for molecular dynamics simulations, J. Comput. Chem. 15, 72–79, 1994.CrossRefGoogle Scholar
  26. [26]
    Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.Google Scholar
  27. [27]
    Pathria, P.K., Statistical Mechanics, Pergamon Press, Oxford, 1972.Google Scholar
  28. [28]
    Pear, M.R. and Weiner, J.H., Brownian dynamics study of a polymer chain of linked rigid bodies, J. Chem. Phys. 71, 212–224, 1979.CrossRefGoogle Scholar
  29. [29]
    Peskin, C.S. and Schlick, T., Molecular dynamics by the backward Euler method, Comm. Pure and Appl. Math. 42, 1001–1031, 1989.CrossRefGoogle Scholar
  30. [30]
    Quinlan, G.D. and Tremaine, S., Symmetric multistep methods for the numerical integration of planetary orbits, Astron. J. 100, 1694–1700, 1990.CrossRefGoogle Scholar
  31. [31]
    Reich, S., Smoothed dynamics of highly oscillatory Hamiltonian systems, Physica D 89, 28–42, 1995.CrossRefGoogle Scholar
  32. [32]
    Reich, S., Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal., 33, 475–491, 1996.CrossRefGoogle Scholar
  33. [33]
    Reich, S., Molecular dynamics with soft constraints, Technical Report UIUC-BI-TB-94-12, Beckman Institute, Urbana, 1994.Google Scholar
  34. [34]
    Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C., Numerical integration of Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23, 327–342, 1977.CrossRefGoogle Scholar
  35. [35]
    Sanders, J.A. and Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985.Google Scholar
  36. [36]
    Sanz-Serna, J.M. and Calvo, M.P., Numerical Hamiltonian Problems, Chapman and Hall, London, 1994.Google Scholar
  37. [37]
    Scully, J.L. and Hermans, J., Multiple time steps: Limits on the speedup of molecular dynamics simulations in aqueous systems, Mol. Simulation 11, 67–77, 1993.CrossRefGoogle Scholar
  38. [38]
    Simo, J., Rarnow, N., and Wong, K.K., Exact energy-momentum conserving algorithms and symplectic schemes for nonlineaer dynamics, Comp. Meth. Appl. Mech. Eng. 1, 1528–1544, 1992.Google Scholar
  39. [39]
    Skeel, R.D., Variable step size destabilizes the Stormer/leapfrog/Verlet method, BIT 33, 172–175, 1993.CrossRefGoogle Scholar
  40. [40]
    Skeel, R.D. and Biesiadecki, J.J., Symplectic integration with variable stepsize, Annals of Numer. Math. 1, 191–198, 1994.Google Scholar
  41. [41]
    Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5, 506–517, 1968.CrossRefGoogle Scholar
  42. [42]
    Streett, W.B., Tildesley, D.J., and Saville, G., Multiple time step methods in molecular dynamics, Mol. Phys. 35, 639–648, 1978.CrossRefGoogle Scholar
  43. [43]
    Tuckerman, M., Berne, B.J., and Martyna, G.J., Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97, 1990–2001, 1992.CrossRefGoogle Scholar
  44. [44]
    van Gunsteren, W.F. and Karplus, M., Effects of constraints on the dynamics of macromolecules, Macromolecules 15, 1528–1544, 1982.CrossRefGoogle Scholar
  45. [45]
    van Gunsteren, W.F., Constrained dynamics of flexible molecules, Molecular Physics 40, 1015–1019, 1980.CrossRefGoogle Scholar
  46. [46]
    Wisdom, J. and Holman, M., Symplectic Maps for the N-body problem, Astron. J. 102, 1528–1538, 1991.CrossRefGoogle Scholar
  47. [47]
    Zhang, G. and Schlick, T., LIN: A new algorithm to simulate the dynamics of biomolecules by combining implicit-integration and normal mode techniques, J. Comput. Chem. 14, 1212–1233, 1993.CrossRefGoogle Scholar
  48. [48]
    Zhang, M.Q. and Skeel, R.D., Symplectic integrators and the conservation of angular momentum, J. Comput. Chem. 16, 365–369, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Benedict J. Leimkuhler
    • 1
  • Sebastian Reich
    • 2
  • Robert D. Skeel
    • 3
  1. 1.Department of MathematicsUniversity of KansasLawrenceUSA
  2. 2.Konrad-Zuse ZentrumBerlinGermany
  3. 3.Department of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations