Advertisement

Regularity

  • Michel Simonnet
Part of the Universitext book series (UTX)

Summary

8.1 A measure defined on a semiring Φ is said to be strictly regular if its main prolongation is a prolongation of a Radon measure. If each open subset of Ω is a countable union of compact sets, if Φ̃ is the Borel σ-algebra, and if each compact set is μ-integrable, then μ is strictly regular (Theorem 8.1.2).

Keywords

Open Subset Lebesgue Measure Radon Measure Countable Union Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Michel Simonnet
    • 1
  1. 1.Department of MathematicsUniversity of DakarSenegal

Personalised recommendations