Skip to main content

General Mathematical Description of Pattern-Forming Instabilities

  • Chapter
Book cover Pattern Formation in Liquid Crystals

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

We describe methods to derive from the basic macroscopic equations weakly nonlinear descriptions valid at small amplitudes of the patterns. Spatial variations are included so that the stability of the patterns, defects, and complex dynamic states can be captured. Special emphasis is given to effects of anisotropy typical for liquid crystals, which lead to characteristic forms of the largely universal equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993).

    Article  ADS  Google Scholar 

  2. T. Frisch, S. Rica, P. Coullet, and J. Gilli, Phys. Rev. Lett. 72, 1471 (1994).

    Article  ADS  Google Scholar 

  3. K. Migler and R. B. Meyer, Physica D 71, 412 (1994).

    Article  ADS  MATH  Google Scholar 

  4. A. Chuvyrov, O. Scaldin, and V. Delev, Mol. Cryst. Liq. Cryst. 215, 187 (1992).

    Article  Google Scholar 

  5. W. Zimmermann and L. Kramer, Phys. Rev. Lett. 56, 2655 (1986).

    Article  ADS  Google Scholar 

  6. Q. Feng, W. Pesch, and L. Kramer, Phys. Rev. A 45, 7242 (1992).

    Article  ADS  Google Scholar 

  7. A. C. Newell, T. Passot, and J. Lega, Ann. Rev. Fluid Mech. 25, 399 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  8. J. D. Crawford, Rev. Mod. Phys. 63, 991 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Landau, On the theory of phase transitions, Part I and II, in Collected papers ofL. D. Landau, edited by D. ter Haar, Gordon and Breach Science, New York (1967).

    Google Scholar 

  10. L. P. Gor’kov, Sov. Phys. JETP 6, 3 (1958).

    MathSciNet  Google Scholar 

  11. W. V. R. Malkus and G. Veronis, J. Fluid Mech. 4, 225 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. la Torre Juarez and I. Rehberg, Phys. Rev. A 42, 2096 (1990).

    Article  ADS  Google Scholar 

  13. I. Rehberg, B. L. Winkler, M. de la Torre Juarez, S. Rasenat, and W. Schöpf, Adv. Solid State Physics 29, 35 (1989).

    Article  Google Scholar 

  14. M. Dennin, G. Ahlers, and D. Cannell, Mol. Cryst. Liq. Cryst. 261, 377 (1994).

    Google Scholar 

  15. M. Silber, H. Riecke, and L. Kramer, Physica D 61, 260 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. F. H. Busse, J. Fluid Mech. 30, 625 (1967).

    Article  ADS  MATH  Google Scholar 

  17. H. Riecke, M. Silber, and L. Kramer, Phys. Rev. E 49, 4100 (1994).

    Article  ADS  Google Scholar 

  18. H. L. Kuo, J. Fluid Mech. 10, 611 (1961).

    Article  ADS  Google Scholar 

  19. V. Ginzburg and L. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  20. A. C. Newell, Lect. Appl. Math. 15, 157 (1974).

    MathSciNet  Google Scholar 

  21. E. Bodenschatz, W. Pesch, and L. Kramer, Physica D 32, 135 (1988).

    Article  ADS  MATH  Google Scholar 

  22. E. Knobloch and J. Luca, Nonlinearity 3, 975 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. B. J. Matkowski and V. Volpert, Physica D 54, 203 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Pesch and L. Kramer, Z. Phys. B 63, 121 (1986).

    Google Scholar 

  25. E. Bodenschatz, M. Kaiser, L. Kramer, W. Pesch, A. Weber, and W. Zimmermann, in New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Nonequilibrium, edited by P. Coullet and P. Huerre, Plenum (1989). NATO ASI Series.

    Google Scholar 

  26. A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969).

    Article  ADS  MATH  Google Scholar 

  27. L. A. Segel, J. Fluid Mech. 38, 203 (1969).

    Article  ADS  MATH  Google Scholar 

  28. H. Brand, P. Lomdahl, and A. Newell, Physica D 23, 1007 (1986).

    Article  Google Scholar 

  29. E. Bodenschatz, A. Weber, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).

    Article  ADS  Google Scholar 

  30. P. Manneville, J. Phys. (Paris) 44, 759 (1983).

    MathSciNet  Google Scholar 

  31. W. Eckhaus, Studies in Nonlinear Stability Theory, Springer, New York (1965).

    Google Scholar 

  32. F. H. Busse, J. Math. Phys. 46, 140 (1967).

    MATH  Google Scholar 

  33. L. Kramer and W. Zimmermann, Physica D 16, 221 (1985).

    Article  ADS  MATH  Google Scholar 

  34. L. Kramer, H. Schober, and W. Zimmermann, Physica D 31, 212 (1988).

    Article  ADS  MATH  Google Scholar 

  35. L. Kramer, E. Bodenschatz, W. Pesch, and W. Zimmermann, in The Physics of Structure Formation, edited by W. Güttinger and G. Dangelmayr, Springer, Berlin (1987).

    Google Scholar 

  36. E. Bodenschatz, PhD thesis, Universität Bayreuth, 1989.

    Google Scholar 

  37. F. H. Busse and M. Auer, Phys. Rev. Lett. 72, 3178 (1994).

    Article  ADS  Google Scholar 

  38. L. Kramer, E. Bodenschatz, W. Pesch, W. Thorn, and W. Zimmermann, Liq. Cryst. 5(2), 699(1989).

    Google Scholar 

  39. L. M. Pismen and J. D. Rodriguez, Phys. Rev. A 42, 2471 (1990).

    Article  ADS  Google Scholar 

  40. L. Kramer, E. Bodenschatz, and W. Pesch, Phys. Rev. Lett. 64, 2588 (1990).

    Article  ADS  Google Scholar 

  41. I. Aranson, L. Kramer, and A. Weber, The theory of motion of spiral waves in oscillatory media, in Spatio-Temporal Patterns inNonequilibrium Systems, edited by P. Cladis and P. Palffy-Muharoy, Addison Wesley 1995 p. 479. SFI Studies in the Science of Complexity.

    Google Scholar 

  42. T. Benjamin and J. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  ADS  MATH  Google Scholar 

  43. S. Sakaguchi, Prog. Theor. Phys. 84, 792 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  44. B. I. Shraiman, A. Pumir, W. van Saarloos, P. C. Hohenberg, H. Chaté, and M. Holen, Physica D 57, 241 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. H. Chaté, Disordered regimes of the one-dimensional Ginzburg-Landau equation, in Spatio-Temporal Patterns in Nonequilibrium Systems, edited by P. Cladis and P. Palffy-Muharoy, Addison Wesley 1995. SFI Studies in the Science of Complexity.

    Google Scholar 

  46. I. S. Aranson, L. Kramer, S. Popp, O. Stiller, and A. Weber, Phys. Rev. Lett. 70, 3880 (1993).

    Article  ADS  Google Scholar 

  47. W. van Saarloos, The complex Ginzburg-Landau equation for beginners, in Spatio-Temporal Patterns in Nonequilibrium Systems, edited by P. Cladis and P. Palffy-Muharoy, Addison Wesley 1995. SFI Studies in the Science of Complexity.

    Google Scholar 

  48. P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lett. 62, 1619 (1989).

    Article  ADS  Google Scholar 

  49. G. Huber, P. Alstrøm, and T. Bohr, Phys. Rev. Lett. 69, 2380 (1992).

    Article  ADS  Google Scholar 

  50. G. Huber, Vortex solids and vortex liquids in a complex Ginzburg-Landau system, in Spatio-Temporal Patterns in Nonequilibrium Systems, edited by P. Cladis and P. Palffy-Muharoy, Addison Wesley 1995. SFI Studies in the Science of Complexity.

    Google Scholar 

  51. I. S. Aranson, L. Kramer, and A. Weber, Phys. Rev. Lett. 72, 2316 (1994).

    Article  ADS  Google Scholar 

  52. F. H. Busse, Fundamentals of thermal convection, in Mantle convection, Plate Tectonics and Global Dynamics, edited by W. R. Peltier, editor, Gordon and Breach 1989.

    Google Scholar 

  53. F. H. Busse, in Hydrodynamic Instabilities and the Transition to Turbulence, edited by H. L. Swinney and J. P. Gollub, Springer, Berlin 1986.

    Google Scholar 

  54. W. Decker, PhD thesis, Universität Bayreuth, 1995.

    Google Scholar 

  55. H. Haken, Synergetics, Springer, New York (1978).

    MATH  Google Scholar 

  56. M. C. Cross, Phys. Fluids 23, 1727 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. P. Manneville, Dissipative Structures and Weak Turbulence, Academic Press, New York (1990).

    MATH  Google Scholar 

  58. Q. Feng, W. Decker, W. Pesch, and L. Kramer, J. Phys. France II 2, 1303 (1992).

    Google Scholar 

  59. F. H. Busse and R. M. Clever, J. Fluid Mech. 91, 319 (1979).

    Article  ADS  Google Scholar 

  60. M. Kaiser and W. Pesch, Phys. Rev. E 48, 4510 (1993).

    Article  ADS  Google Scholar 

  61. W. Decker and W. Pesch, J. Phys. France II 4, 419 (1994).

    Google Scholar 

  62. R. M. Clever and F. H. Busse, Phys. Fluid. A2, 334 (1990).

    MathSciNet  ADS  Google Scholar 

  63. M. C. Cross, Phys. Rev. A 27, 490 (1983).

    Article  ADS  Google Scholar 

  64. F. H. Busse and E. W. Bolton, J. Fluid Mech. 146, 115 (1984).

    Article  ADS  MATH  Google Scholar 

  65. A. Zippelius and E. Siggia, Phys. Fluids 26, 2905 (1983).

    Article  ADS  MATH  Google Scholar 

  66. J. Carr, Applications of Center Manifold Theory, Applied Mathematical Sciences, Springer, Berlin, New York (1981).

    Google Scholar 

  67. J. D. Crawford and E. Knobloch, Ann. Rev. Fluid Mech. 23, 341 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  68. S. Sasa, Prog. Theor. Phys. 83, 824 (1990).

    Article  ADS  Google Scholar 

  69. J. B. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319 (1977).

    Article  ADS  Google Scholar 

  70. M. Neufeld, R. Friedrich, and H. Haken, Z. Phys. B 92, 243 (1993).

    Article  ADS  Google Scholar 

  71. H. S. Greenside, W. M. Coughran, and N. L. Schryer, Phys. Rev. Lett. 49, 726 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  72. H. W. Xi, J. D. Gunton, and J. Viñals, Phys. Rev. Lett. 71(13), 2030 (1993).

    Article  ADS  Google Scholar 

  73. Y Kuramoto, Prog. Theor. Phys. 71, 1182 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. S. Sakaguchi, Prog. Theor. Phys. 88, 1129 (1993).

    MathSciNet  Google Scholar 

  75. B. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H. Richter, and L. Kramer, Physica D 67, 404(1992).

    MathSciNet  Google Scholar 

  76. M. C. Cross and A. C. Newell, Physica D 10, 299 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. T. Passot and A. C. Newell, Physica D 74, 301S (1994).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Pesch, W., Kramer, L. (1996). General Mathematical Description of Pattern-Forming Instabilities. In: Buka, A., Kramer, L. (eds) Pattern Formation in Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3994-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3994-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8464-2

  • Online ISBN: 978-1-4612-3994-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics