Some Novel Features of Nonequilibrium Systems

  • Mark I. Dykman
  • Mark M. Millonas
  • Vadim N. Smelyanskiy
Part of the Institute for Nonlinear Science book series (INLS)


In this chapter, we explore two novel features of nonequilibrium systems—fluctuation-induced transport and the formation and significance of nonequilibrium singularities. These phenomena are excellent examples of some of the interesting things that can happen in fluctuating nonequilibrium systems. They also serve as reminders that much of our intuition about noise formed from an understanding of equilibrium systems can leave us unprepared for the variety and complexity of nonequilibrium phenomena.


Saddle Point Optimal Path Basin Boundary Nonequilibrium System Lagrangian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.S. Leff and A.F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, Princeton, NJ, 1990).Google Scholar
  2. [2]
    R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in Physics (Addison-Wesley, Reading, MA, 1963).Google Scholar
  3. [3]
    M. Büttiker, Z. Phys. B 68, 161 (1987)ADSCrossRefGoogle Scholar
  4. [3a]
    N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)CrossRefGoogle Scholar
  5. [3b]
    M. Büttiker, Z. Phys. B 68, 135 (1987).MathSciNetCrossRefGoogle Scholar
  6. [4]
    R. Landauer, J. Appl. Phys. 33, 2209 (1962)ADSCrossRefGoogle Scholar
  7. [4a]
    R. Landauer, J. Stat. Phys. 9, 351 (1973)ADSCrossRefGoogle Scholar
  8. [4b]
    R. Landauer, J. Stat. Phys. 11, 525 (1974)ADSCrossRefGoogle Scholar
  9. [4c]
    R. Landauer, J. Stat. Phys. 13, 1 (1975).ADSCrossRefGoogle Scholar
  10. [5]
    C. Peskin, G.B. Ermentrout, and G. Oster, in Cell Mechanics and Cellular Enginering, edited by V. Mow et al. (Springer-Verlag, New York, 1994)Google Scholar
  11. [5a]
    D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).ADSCrossRefGoogle Scholar
  12. [6]
    A. Ajdari and J. Prost, C. R. Acad. Sci. Paris 315, 1635 (1992).Google Scholar
  13. [7]
    M. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).ADSCrossRefGoogle Scholar
  14. [8]
    See the comments by J. Maddox, Nature 365, 203 (1993)ADSCrossRefGoogle Scholar
  15. [8a]
    See the comments by J. Maddox, Nature 368, 287 (1994)ADSCrossRefGoogle Scholar
  16. [8b]
    See the comments by J. Maddox, Nature 369, 181 (1994)ADSCrossRefGoogle Scholar
  17. [8c]
    S. Leiber, 370, 412 (1994).Google Scholar
  18. [9]
    M.M. Millonas and D.I. Dykman, Phys. Lett. A 183, 65 (1994).MathSciNetADSCrossRefGoogle Scholar
  19. [10]
    J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev. Lett. 72, 2652 (1994).ADSCrossRefGoogle Scholar
  20. [11]
    C. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72, 2984 (1994).ADSCrossRefGoogle Scholar
  21. [12]
    J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature 370, 412 (1994).CrossRefGoogle Scholar
  22. [13]
    D.R. Chialvo and M.M. Millonas, SFI Report 94–07–044 (1994)Google Scholar
  23. [13a]
    M.M. Millonas and D.R. Chialvo, Phys. Lett. A (in press).Google Scholar
  24. [14]
    M.M. Millonas and D.R. Chialvo, Phys. Rev. F (in press).Google Scholar
  25. [15]
    For derivations in a similar spirit see H. Mori, Prog. Theor. Phys. 33, 423 (1965)ADSMATHCrossRefGoogle Scholar
  26. [15a]
    M.I. Dykman and M.A. Krivoglaz, Phys. Status Solidi 48, 497 (1971)CrossRefGoogle Scholar
  27. [15b]
    R. Zwanzig, J. Stat. Phys. 9, 215 (1973)ADSCrossRefGoogle Scholar
  28. [15c]
    K. Kawasaki, J. Phys. A 6, 1289 (1973)MathSciNetADSCrossRefGoogle Scholar
  29. [15d]
    H. Grabert, P. Hanggi, and P. Talkner, J. Stat. Phys. 22, 537 (1980); and references cited therein.MathSciNetADSCrossRefGoogle Scholar
  30. [16]
    J.M. Sancho, M. San Miguel, and D. Duerr, J. Stat. Phys. 28, 291 (1982).ADSMATHCrossRefGoogle Scholar
  31. [17]
    M.M. Millonas, Phys. Rev. Lett. 74, 10 (1995).ADSCrossRefGoogle Scholar
  32. [18]
    A.M. Jayannavar, Phys. Rev. E (in press).Google Scholar
  33. [19]
    M.I. Dykman, Phys. Rev. A 42, 2020 (1990).MathSciNetADSCrossRefGoogle Scholar
  34. [20]
    L. Brillouin, J. Appl. Phys. 22, 334 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  35. [21]
    L. Szilard, Z. Phys. 53, 840 (1929).ADSCrossRefGoogle Scholar
  36. [22]
    M.I. Freidlin and A.D. Ventzel, Random Perturbations in Dynamical Systems (Springer-Verlag, Berlin, 1984)Google Scholar
  37. [22a]
    R. Graham, in Noise in Nonlinear Dynamical Systems, vol. 1, edited by F. Moss and P.V.E. McClintock (Cambridge University Press, Cambridge, 1989), p. 225.CrossRefGoogle Scholar
  38. [23]
    M.I. Dykman and K. Lindenberg, in Contemporary Problems in Statistical Physics, edited by G. Weiss (SIAM, Philadelphia, 1994), p. 41.CrossRefGoogle Scholar
  39. [24]
    M.V. Berry, Adv. Phys. 35, 1 (1976)ADSCrossRefGoogle Scholar
  40. [24a]
    L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).MATHGoogle Scholar
  41. [25]
    H.R. Jauslin, Physica 144A, 179 (1987).MathSciNetADSGoogle Scholar
  42. [26]
    M.V. Day, Stochastics 20, 121 (1987).MathSciNetMATHCrossRefGoogle Scholar
  43. [27]
    R.S. Maier and D.L. Stein, Phys. Rev. Lett. 69, 3691 (1992)ADSCrossRefGoogle Scholar
  44. [27a]
    R.S. Maier and D.L. Stein, Phys. Rev. E 48, 931 (1993).ADSCrossRefGoogle Scholar
  45. [28]
    V.A. Chinarov, M.I. Dykman, and V.N. Smelyanskiy, Phys. Rev. E 47, 2448 (1993).ADSCrossRefGoogle Scholar
  46. [29]
    R.S. Maier and D.L. Stein, Phys. Rev. Lett. 71, 1783 (1993).ADSCrossRefGoogle Scholar
  47. [30]
    M.I. Dykman, E. Mori, J. Ross, and P.M. Hunt, J. Chem. Phys. (1994).Google Scholar
  48. [31]
    G. Gabrielse, H. Dehmelt, and W. Kells, Phys. Rev. Lett. 54, 537 (1985).ADSCrossRefGoogle Scholar
  49. [32]
    D. Ludwig, SIAM Rev. 17, 605 (1975).MathSciNetMATHCrossRefGoogle Scholar
  50. [33]
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, Berlin, 1978).MATHGoogle Scholar
  51. [34]
    H. Whitney, Ann. Math. 62, 374 (1955)MathSciNetMATHCrossRefGoogle Scholar
  52. [34a]
    VI. Arnold, Catastrophe Theory (Springer-Verlag, New York, 1984).MATHGoogle Scholar
  53. [35]
    M.I. Dykman, M.M. Millonas, and V.N. Smelyanskiy (in preparation).Google Scholar
  54. [36]
    M.I. Dykman, P.V.E. McClintock, V.N. Smelyanskiy, N.D. Stein, and N.G. Stocks, Phys. Rev. Lett. 68, 2718 (1992).ADSCrossRefGoogle Scholar
  55. [37]
    R. Graham and T. Tèl, Phys. Rev. A 31, 1109 (1985).MathSciNetADSCrossRefGoogle Scholar
  56. [38]
    B.J. Matkowsky and Z. Schuss, Physica 95A, 213 (1983)MathSciNetGoogle Scholar
  57. [38a]
    P. Talkner, Z. Phys. B 68, 201 (1987)MathSciNetADSCrossRefGoogle Scholar
  58. [38b]
    M.V. Day, Ann. Prob. 20, 1385 (1992)MATHCrossRefGoogle Scholar
  59. [38c]
    M.V. Day, Stochastics (1994).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Mark I. Dykman
  • Mark M. Millonas
  • Vadim N. Smelyanskiy

There are no affiliations available

Personalised recommendations