Limit Process Expansions for Partial Differential Equations

  • J. Kevorkian
  • J. D. Cole
Part of the Applied Mathematical Sciences book series (AMS, volume 114)

Abstract

In this chapter, the methods developed in Chapter 2 are applied to partial differential equations. The plan is the same as for the cases of ordinary differential equations discussed earlier. First, we discuss the very simplest case in which a singular perturbation problem arises; that of a second-order equation that becomes a first-order one in the limit ∈ → 0. Following this, various more complicated physical examples of boundary-layer theory in fluid mechanics are discussed. The final section deals with a variety of physical examples for singular boundary-value problems.

Keywords

Entropy Vortex Attenuation Assure Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1.
    A. Acrivos and A.S. Sangani, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. London A, 386, 1983, pp. 263–275.CrossRefGoogle Scholar
  2. 3.2.
    V. Barcilon, J.D. Cole, and R.S. Eisenberg, “A singular perturbation analysis of induced electric fields in cells,” SIAM J. Appl. Math., 21, 1971, pp. 339–353.MATHCrossRefGoogle Scholar
  3. 3.3.
    S. Childress, Mechanics of Swimming and Flying, Cambridge University Press, Cambridge, 1981.MATHCrossRefGoogle Scholar
  4. 3.4.
    J.D. Cole, “Limit process expansions and homogenization,” SIAM J. Appl. Math., 55, 1995, pp. 410–424.MathSciNetMATHCrossRefGoogle Scholar
  5. 3.5.
    J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Q. Appl. Math., 9, 1951, pp. 225–236.MATHGoogle Scholar
  6. 3.6.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, Inc., New York, 1953.Google Scholar
  7. 3.7.
    G.C. Everstine and A.C. Pipkin, “Boundary layers in fiber-reinforced materials,” J. Appl. Mech., 40, 1973, pp. 518–522.MATHCrossRefGoogle Scholar
  8. 3.8.
    J. Grasman and B.J. Matkowsky, “A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points,” SIAM J. Appl. Math., 32, 1977, pp. 588–597.MathSciNetMATHCrossRefGoogle Scholar
  9. 3.9.
    R.P. Gregory and F.Y.M. Wan, “Correct asymptotic theories for the axisymmetric deformation of thin and moderately thick cylindrical shells,” Int. J. Solids and Structures, 30, 1993, pp. 1957–1981.MATHCrossRefGoogle Scholar
  10. 3.10.
    J.-F. Hamet, “Some acoustic phenomena related to curved surfaces,” Ph.D. Thesis, University of California, Los Angeles, 1971.Google Scholar
  11. 3.11.
    E. Hopf, “The partial differential equation u t + uu x = µu xx,” Comm. Pure Appl. Math., 3, 1950, pp. 201–230.MathSciNetMATHCrossRefGoogle Scholar
  12. 3.12.
    S. Kaplun, “Low Reynolds number flow past a circular cylinder,” J. Math. Mech., 6, 1957, pp. 595–603.MathSciNetMATHGoogle Scholar
  13. 3.13.
    S. Kaplun, “The role of coordinate systems in boundary layer theory,” Zeitshrift für Angewandte Mathematik und Physik, 2, 1954, pp. 111–135.MathSciNetCrossRefGoogle Scholar
  14. 3.14.
    S. Kaplun and P.A. Lagerstrom, “Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers,” J. Math. Mech., 6, 1957, pp. 515–593.MathSciNetGoogle Scholar
  15. 3.15.
    J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques, Chapman & Hall, New York, London 1990, 1993.MATHGoogle Scholar
  16. 3.16.
    P.A. Lagerstrom, Laminar Flow Theory, in High Speed Aerodynamics and Jet Propulsion, F.K. Moore, Ed., Vol. 4, Princeton University Press, Princeton, NJ, 1964, pp. 20–285.Google Scholar
  17. 3.17.
    P.A. Lagerstrom, “Note on the preceding two papers,” J. Math. Mech., 6, 1957, pp. 605–606.MathSciNetMATHGoogle Scholar
  18. 3.18.
    P.A. Lagerstrom and J.D. Cole, “Examples illustrating expansion procedures for the Navier-Stokes equations,” J. Rat. Mech. Anal, 4, 1955, pp. 817–882.MathSciNetMATHGoogle Scholar
  19. 3.19.
    P.A. Lagerstrom, L.N. Howard, and C.-S. Liu, Fluid Mechanics and Singular Perturbations, A Collection of Papers by Saul Kaplun, Academic Press, New York, 1967.Google Scholar
  20. 3.20.
    H. Lamb, Hydrodynamics, Dover, New York, 1945.Google Scholar
  21. 3.21.
    L. Landau and E. Lifschitz, Fluid Mechanics, Pergamon Press, New York, 1959.Google Scholar
  22. 3.22.
    R. Landauer, Electrical conductivity in inhomogeneous media, A.I.P. Conf. Proceedings #40, American Institute of Physics, New York, 1977.Google Scholar
  23. 3.23.
    A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells: One Spatial Dimension, Academic Press, Boston, 1988.MATHGoogle Scholar
  24. 3.24.
    M.J. Lighthill, Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1975.MATHGoogle Scholar
  25. 3.25.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge University Press, 1927.MATHGoogle Scholar
  26. 3.26.
    D. Ludwig, “Uniform asymptotic expansions for wave propagation and diffraction problems,” SIAM Rev., 12, 1970, pp. 325–331.MathSciNetMATHCrossRefGoogle Scholar
  27. 3.27.
    R. O’Brien, “A method for the calculation of the effective transport properties of suspensions of interacting particles,” J. Fluid Mech., 91, 1979, pp. 17–39.MathSciNetMATHCrossRefGoogle Scholar
  28. 3.28.
    R. Peierls, More Surprises in Theoretical Physics, Princeton University Press, Princeton, NJ, 1991.Google Scholar
  29. 3.29.
    A. Peskoff, “Green’s function for Laplace’s equation in an infinite cylindrical cell,” J. Math. Phys., 15, 1974, pp. 2112–2120.MathSciNetMATHCrossRefGoogle Scholar
  30. 3.30.
    A. Peskoff and R.S. Eisenberg, “The time-dependent potential in a spherical cell using matched asymptotic expansions,” J. Math. Bio., 2, 1975, pp. 277–300.MathSciNetMATHCrossRefGoogle Scholar
  31. 3.31.
    A. Peskoff, R.S. Eisenberg, and J.D. Cole, “Matched asymptotic expansions of the Green’s function for the electric potential in an infinite cylindrical cell,” SIAM J. Appl. Math., 30, 1976, pp. 222–239.MathSciNetMATHCrossRefGoogle Scholar
  32. 3.32.
    A. Peskoff, R.S. Eisenberg, and J.D. Cole, Potential Induced by a Point Source of Current in the Interior of a Spherical Cell, University of California at Los Angeles, Rept. U.C.L.A.-ENG-7259, 1972.Google Scholar
  33. 3.33.
    A.C. Pipkin, Stress Channeling and Boundary Layers in Strongly Anisotropic Solids, Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A.J.M. Spencer, Ed., CISM Courses and Lectures No. 282, Springer-Verlag, Wien-New York, 1984, pp. 123–145.Google Scholar
  34. 3.34.
    L. Prandtl, Über Flüsigkeiten bei sehr kleiner Reibung. Verh. III, International Math. Kongress, Heidelberg, 1905, Teubner, Leipzig, pp. 484–491.Google Scholar
  35. 3.35.
    I. Proudman and J.R.A. Pearson, “Expansions at small Reynolds number for the flow past a sphere and a circular cylinder,” J. Fluid Mech., 2, Part 3, 1957, pp. 237–262.MathSciNetMATHCrossRefGoogle Scholar
  36. 3.36.
    Lord Rayleigh, Theory of Sound, Dover, New York, v2, 1945, pp. 126–129.MATHGoogle Scholar
  37. 3.37.
    Lord Rayleigh, “The problem of the whispering gallery,” Philos. Mag., 20, 1910, pp. 1001–1004.Google Scholar
  38. 3.38.
    Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of the medium,” Philos. Mag., 34, 1892, pp. 481–502.Google Scholar
  39. 3.39.
    R.D. Taylor, Cable Theory, Physical Techniques in Biological Research, W.L. Nastuk, Ed., Vol. VIB., Academic Press, New York, 1963, pp. 219–262.Google Scholar
  40. 3.40.
    T. Theodorsen, Impulse and Momentum in an Infinite Fluid, Memorial Volume in Honor of the 60th Birthday of Th. von Karman, Caltech, Pasadena, CA, 1941.Google Scholar
  41. 3.41.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill Book Co., New York, 1959.Google Scholar
  42. 3.42.
    F.Y.M. Wan and H.J. Weinitschke, “On shells of revolution with the Love-Kirchhoff hypothesis,” J. Eng. Math., 22, 1988, pp. 285–334.MathSciNetMATHCrossRefGoogle Scholar
  43. 3.43.
    H. Weyl, “On the differential equations of the simplest boundary layer problems,” Ann. Math., 43, 1942, pp. 381–407.MathSciNetMATHCrossRefGoogle Scholar
  44. 3.44.
    G.B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • J. Kevorkian
    • 1
  • J. D. Cole
    • 2
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations