Skip to main content

Limit Process Expansions for Partial Differential Equations

  • Chapter
Multiple Scale and Singular Perturbation Methods

Part of the book series: Applied Mathematical Sciences ((AMS,volume 114))

  • 1930 Accesses

Abstract

In this chapter, the methods developed in Chapter 2 are applied to partial differential equations. The plan is the same as for the cases of ordinary differential equations discussed earlier. First, we discuss the very simplest case in which a singular perturbation problem arises; that of a second-order equation that becomes a first-order one in the limit ∈ → 0. Following this, various more complicated physical examples of boundary-layer theory in fluid mechanics are discussed. The final section deals with a variety of physical examples for singular boundary-value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Acrivos and A.S. Sangani, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. London A, 386, 1983, pp. 263–275.

    Article  Google Scholar 

  2. V. Barcilon, J.D. Cole, and R.S. Eisenberg, “A singular perturbation analysis of induced electric fields in cells,” SIAM J. Appl. Math., 21, 1971, pp. 339–353.

    Article  MATH  Google Scholar 

  3. S. Childress, Mechanics of Swimming and Flying, Cambridge University Press, Cambridge, 1981.

    Book  MATH  Google Scholar 

  4. J.D. Cole, “Limit process expansions and homogenization,” SIAM J. Appl. Math., 55, 1995, pp. 410–424.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Q. Appl. Math., 9, 1951, pp. 225–236.

    MATH  Google Scholar 

  6. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, Inc., New York, 1953.

    Google Scholar 

  7. G.C. Everstine and A.C. Pipkin, “Boundary layers in fiber-reinforced materials,” J. Appl. Mech., 40, 1973, pp. 518–522.

    Article  MATH  Google Scholar 

  8. J. Grasman and B.J. Matkowsky, “A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points,” SIAM J. Appl. Math., 32, 1977, pp. 588–597.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.P. Gregory and F.Y.M. Wan, “Correct asymptotic theories for the axisymmetric deformation of thin and moderately thick cylindrical shells,” Int. J. Solids and Structures, 30, 1993, pp. 1957–1981.

    Article  MATH  Google Scholar 

  10. J.-F. Hamet, “Some acoustic phenomena related to curved surfaces,” Ph.D. Thesis, University of California, Los Angeles, 1971.

    Google Scholar 

  11. E. Hopf, “The partial differential equation u t + uu x = µu xx ,” Comm. Pure Appl. Math., 3, 1950, pp. 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Kaplun, “Low Reynolds number flow past a circular cylinder,” J. Math. Mech., 6, 1957, pp. 595–603.

    MathSciNet  MATH  Google Scholar 

  13. S. Kaplun, “The role of coordinate systems in boundary layer theory,” Zeitshrift für Angewandte Mathematik und Physik, 2, 1954, pp. 111–135.

    Article  MathSciNet  Google Scholar 

  14. S. Kaplun and P.A. Lagerstrom, “Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers,” J. Math. Mech., 6, 1957, pp. 515–593.

    MathSciNet  Google Scholar 

  15. J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques, Chapman & Hall, New York, London 1990, 1993.

    MATH  Google Scholar 

  16. P.A. Lagerstrom, Laminar Flow Theory, in High Speed Aerodynamics and Jet Propulsion, F.K. Moore, Ed., Vol. 4, Princeton University Press, Princeton, NJ, 1964, pp. 20–285.

    Google Scholar 

  17. P.A. Lagerstrom, “Note on the preceding two papers,” J. Math. Mech., 6, 1957, pp. 605–606.

    MathSciNet  MATH  Google Scholar 

  18. P.A. Lagerstrom and J.D. Cole, “Examples illustrating expansion procedures for the Navier-Stokes equations,” J. Rat. Mech. Anal, 4, 1955, pp. 817–882.

    MathSciNet  MATH  Google Scholar 

  19. P.A. Lagerstrom, L.N. Howard, and C.-S. Liu, Fluid Mechanics and Singular Perturbations, A Collection of Papers by Saul Kaplun, Academic Press, New York, 1967.

    Google Scholar 

  20. H. Lamb, Hydrodynamics, Dover, New York, 1945.

    Google Scholar 

  21. L. Landau and E. Lifschitz, Fluid Mechanics, Pergamon Press, New York, 1959.

    Google Scholar 

  22. R. Landauer, Electrical conductivity in inhomogeneous media, A.I.P. Conf. Proceedings #40, American Institute of Physics, New York, 1977.

    Google Scholar 

  23. A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells: One Spatial Dimension, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  24. M.J. Lighthill, Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1975.

    MATH  Google Scholar 

  25. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge University Press, 1927.

    MATH  Google Scholar 

  26. D. Ludwig, “Uniform asymptotic expansions for wave propagation and diffraction problems,” SIAM Rev., 12, 1970, pp. 325–331.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. O’Brien, “A method for the calculation of the effective transport properties of suspensions of interacting particles,” J. Fluid Mech., 91, 1979, pp. 17–39.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Peierls, More Surprises in Theoretical Physics, Princeton University Press, Princeton, NJ, 1991.

    Google Scholar 

  29. A. Peskoff, “Green’s function for Laplace’s equation in an infinite cylindrical cell,” J. Math. Phys., 15, 1974, pp. 2112–2120.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Peskoff and R.S. Eisenberg, “The time-dependent potential in a spherical cell using matched asymptotic expansions,” J. Math. Bio., 2, 1975, pp. 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Peskoff, R.S. Eisenberg, and J.D. Cole, “Matched asymptotic expansions of the Green’s function for the electric potential in an infinite cylindrical cell,” SIAM J. Appl. Math., 30, 1976, pp. 222–239.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Peskoff, R.S. Eisenberg, and J.D. Cole, Potential Induced by a Point Source of Current in the Interior of a Spherical Cell, University of California at Los Angeles, Rept. U.C.L.A.-ENG-7259, 1972.

    Google Scholar 

  33. A.C. Pipkin, Stress Channeling and Boundary Layers in Strongly Anisotropic Solids, Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A.J.M. Spencer, Ed., CISM Courses and Lectures No. 282, Springer-Verlag, Wien-New York, 1984, pp. 123–145.

    Google Scholar 

  34. L. Prandtl, Über Flüsigkeiten bei sehr kleiner Reibung. Verh. III, International Math. Kongress, Heidelberg, 1905, Teubner, Leipzig, pp. 484–491.

    Google Scholar 

  35. I. Proudman and J.R.A. Pearson, “Expansions at small Reynolds number for the flow past a sphere and a circular cylinder,” J. Fluid Mech., 2, Part 3, 1957, pp. 237–262.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lord Rayleigh, Theory of Sound, Dover, New York, v2, 1945, pp. 126–129.

    MATH  Google Scholar 

  37. Lord Rayleigh, “The problem of the whispering gallery,” Philos. Mag., 20, 1910, pp. 1001–1004.

    Google Scholar 

  38. Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of the medium,” Philos. Mag., 34, 1892, pp. 481–502.

    Google Scholar 

  39. R.D. Taylor, Cable Theory, Physical Techniques in Biological Research, W.L. Nastuk, Ed., Vol. VIB., Academic Press, New York, 1963, pp. 219–262.

    Google Scholar 

  40. T. Theodorsen, Impulse and Momentum in an Infinite Fluid, Memorial Volume in Honor of the 60th Birthday of Th. von Karman, Caltech, Pasadena, CA, 1941.

    Google Scholar 

  41. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill Book Co., New York, 1959.

    Google Scholar 

  42. F.Y.M. Wan and H.J. Weinitschke, “On shells of revolution with the Love-Kirchhoff hypothesis,” J. Eng. Math., 22, 1988, pp. 285–334.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Weyl, “On the differential equations of the simplest boundary layer problems,” Ann. Math., 43, 1942, pp. 381–407.

    Article  MathSciNet  MATH  Google Scholar 

  44. G.B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kevorkian, J., Cole, J.D. (1996). Limit Process Expansions for Partial Differential Equations. In: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3968-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3968-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8452-9

  • Online ISBN: 978-1-4612-3968-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics