Electrophysiologic Characteristics of Heteromeric Recombinant NMDA Receptors

Comparison with Native Receptors
  • Richard Morrisett
Part of the The Receptors book series (REC)


The N-methyl-D-aspartate (NMDA) receptor-channel complex is activated by the major excitatory neurotransmitter occurring in central synapses, glutamate. This ligand-gated ion channel displays several unique biophysical and ionic properties originally described in native systems. Particularly noteworthy of these properties are a high permeability to Ca++, a voltage-dependent block by Mg++, slow channel kinetics, and various single-channel conductance states. With the discovery and expression of NR1 and NR2 sub-unit gene products, there has been extensive analysis of these properties in NMDA channels expressed in both Xenopus oocytes and mammalian expression systems. The purpose of this chapter, therefore, is to compare the available data describing channel behavior in native systems with that obtained from expressed receptors. This chapter is divided along the primary aspects of NMDA channel properties: single channel behavior, ionic (Ca++ and Mg++) characteristics and related results of mutational studies in recombinant receptors, and finally, macroscopic kinetic properties.


NMDA Receptor Xenopus Oocyte Cerebellar Granule Cell Conductance State NMDA Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascher, P. and Nowak, L. (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. 399, 247–266.PubMedGoogle Scholar
  2. Béhé, P., Stern, P., Wyllie, D. J. A., Nassar, M., Schoepfer, R., and Colquhoun, D. (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc. R. Soc. Lond. B 262, 205–213.CrossRefGoogle Scholar
  3. Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J. P., Günther, W., Seeburg, P. H., and Sakmann, B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257, 1415–1419.PubMedCrossRefGoogle Scholar
  4. Burnashev, N., Zhou, Z., Neher, E., and Sakmann, B. (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485.2, 403–418.Google Scholar
  5. Carmignoto, G. and Vicini, S. (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011.PubMedCrossRefGoogle Scholar
  6. Chazot, P. L., Coleman, S. K., Cik, M., and Stephenson, F. A. (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J. Biol. Chem. 269, 24,403–24,409.Google Scholar
  7. Cull-Candy, S. G. and Usowicz, M. M. (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528.PubMedCrossRefGoogle Scholar
  8. Farrant, M., Feldmeyer, D., Takahashi, T., and Cull-Candy, S. G. (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368, 335–339.PubMedCrossRefGoogle Scholar
  9. Gibb, A. J. and Colquhuon, D. (1991) Glutamate activation of a single NMDA receptor-channels produces a cluster of channel openings. Proc. R. Soc. Lond. B 243, 39–45.CrossRefGoogle Scholar
  10. Gibb, A.J. and Colquhuon, D. (1992) Activation of NMDA receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. 456, 143–179.PubMedGoogle Scholar
  11. Hestrin, S. (1992) Developmental regulation of NMDA-receptor-mediated synaptic currents at a central synapse. Nature 357, 686–689.PubMedCrossRefGoogle Scholar
  12. Howe, J.R., Cull-Candy, S.G., and Colquhoun, D. (1991) Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells. J. Physiol. 432, 143–202.PubMedGoogle Scholar
  13. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and Nakanishi, S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 4, 2836–3843.Google Scholar
  14. Johnson, J. W. and Ascher, P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 325, 529–531.PubMedCrossRefGoogle Scholar
  15. Kato, N. and Yoshimura, H. (1993) Reduced Mg++ block of N-methyl-D-aspartate receptor mediated synaptic potentials in developing visual cortex. Proc. Natl. Acad. Sci. USA 90, 7114–7118.PubMedCrossRefGoogle Scholar
  16. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and Mishina, M. (1992) Molecular diversity of the NMDA receptor channel. Nature 358, 36–41.PubMedCrossRefGoogle Scholar
  17. Lester, R. A. J., Clements, J. D., Westbrook, G. L., and Jahr, C. E. (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567.PubMedCrossRefGoogle Scholar
  18. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentrations in cultures spinal cord neurones. Nature 321, 519–522.PubMedCrossRefGoogle Scholar
  19. Momiyama, A., Feldmeyer, D., and Cull-Candy, S. G. (1996) Identification of a low-conductance NMDA-channel with reduced sensitivity to Mg++ in rat central neurones. J. Physiol., in press.Google Scholar
  20. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.PubMedCrossRefGoogle Scholar
  21. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.PubMedCrossRefGoogle Scholar
  22. Mori, H., Masaki, H., Yamakura, T., and Mishina, M. (1992) Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 358, 673–675.PubMedCrossRefGoogle Scholar
  23. Morrisett, R. A., Mott, D. D., Lewis, D. V., Wilson. W. A., and Swartzwelder, H. S. (1990) Reduced sensitivity of the N-methyl-D-aspartate component of synaptic transmission to magnesium in hippocampal slices from immature rats. Dev. Brain Res. 56, 257–262.CrossRefGoogle Scholar
  24. Sommer, B., Kohler, M., Sprengel, R., and Seeburg, P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.PubMedCrossRefGoogle Scholar
  25. Stern, P., Béhé, P., Schoepfer, R., and Colquhoun, D. (1992) Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B 250, 271–277.CrossRefGoogle Scholar
  26. Stern, P., Cik, M., Colquhoun, D., and Stephenson, F. A. (1994) Single-channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes. J. Physiol. 476.3, 391–397.Google Scholar
  27. Watanbe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3, 1138–1140.CrossRefGoogle Scholar
  28. Wyllie, D. J. A., Behe, P., Nassar, M., Schoepfer, R., and Colquhoun, D. (1996) Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc. R. Soc. Lond. B 263, 1079–1086.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Richard Morrisett

There are no affiliations available

Personalised recommendations